Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unprecedented Arctic ozone loss in 2011

Abstract

Chemical ozone destruction occurs over both polar regions in local winter–spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was—for the first time in the observational record—comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18–20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Meteorology of the Arctic lower stratosphere.
Figure 2: Chemical composition in the lower stratosphere.
Figure 3: Vertical composition information.
Figure 4: Chemical ozone loss estimates.
Figure 5: Total column ozone.

References

  1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985)

    ADS  CAS  Article  Google Scholar 

  2. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986)

    ADS  CAS  Article  Google Scholar 

  3. Molina, L. T. & Molina, M. J. Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys. Chem. 91, 433–436 (1987)

    CAS  Article  Google Scholar 

  4. Anderson, J. G., Brune, W. H. & Proffitt, M. H. Ozone destruction by chlorine radicals within the Antarctic vortex: the spatial and temporal evolution of ClO-O3 anticorrelation based on in situ ER-2 data. J. Geophys. Res. 94, 11465–11479 (1989)

    ADS  CAS  Article  Google Scholar 

  5. Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Schoeberl, M. R. & Hartmann, D. L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251, 46–52 (1991)

    ADS  CAS  Article  Google Scholar 

  7. World Meteorological Organization . Scientific Assessment of Ozone Depletion: 2010 (Report 52, Global Ozone Research and Monitoring Project, 2011)

    Google Scholar 

  8. Solomon, P. M. et al. High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: secular variation. Nature 328, 411–413 (1987)

    ADS  CAS  Article  Google Scholar 

  9. Waters, J. W. et al. Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. Nature 362, 597–602 (1993)

    ADS  CAS  Article  Google Scholar 

  10. Santee, M. L., Manney, G. L., Waters, J. W. & Livesey, N. J. Variations and climatology of ClO in the polar lower stratosphere from UARS Microwave Limb Sounder measurements. J. Geophys. Res.. 108, 4454, http://dx.doi.org/10.1029/2002JD003335 (2003)

    Article  Google Scholar 

  11. Santee, M. L. et al. A study of stratospheric chlorine partitioning based on new satellite measurements and modeling. J. Geophys. Res.. 113, D12307, http://dx.doi.org/10.1029/2007JD009057 (2008)

    ADS  Article  Google Scholar 

  12. World Meteorological Organization . Scientific Assessment of Ozone Depletion: 2006 (Report 50, Global Ozone Research and Monitoring Project, 2007)

    Google Scholar 

  13. Rex, M. et al. Arctic winter 2005: implications for stratospheric ozone loss and climate change. Geophys. Res. Lett.. 33, L23808, http://dx.doi.org/10.1029/2006GL026731 (2006)

    ADS  Article  Google Scholar 

  14. Manney, G. L. et al. EOS MLS observations of ozone loss in the 2004–2005 Arctic winter. Geophys. Res. Lett.. 33, L04802, http://dx.doi.org/10.1029/2005GL024494 (2006)

    ADS  Google Scholar 

  15. Harris, N. R. P., Lehmann, R., Rex, M. & von der Gathen, P. A closer look at Arctic ozone loss and polar stratospheric clouds. Atmos. Chem. Phys. 10, 8499–8510 (2010)

    ADS  CAS  Article  Google Scholar 

  16. Rex, M. et al. Arctic ozone loss and climate change. Geophys. Res. Lett.. 31, L04116, http://dx.doi.org/10.1029/2003GL018844 (2004)

    ADS  Article  Google Scholar 

  17. Tilmes, S., Müller, R., Engel, A., Rex, M. & Russell, J. M., III Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophys. Res. Lett.. 33, L20812, http://dx.doi.org/10.1029/2006GL026925 (2006)

    ADS  Article  Google Scholar 

  18. Poole, L. R. & Pitts, M. C. Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurement II observations from 1978 to 1989. J. Geophys. Res. 99, 13083–13089 (1994)

    ADS  Article  Google Scholar 

  19. Fromm, M. D. et al. An analysis of Polar Ozone and Aerosol Measurement (POAM) II Arctic stratospheric cloud observations, 1993–1996. J. Geophys. Res. 104, 24341–24357 (1999)

    ADS  CAS  Article  Google Scholar 

  20. Pitts, M. C., Poole, L. R. & Thomason, L. W. CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination. Atmos. Chem. Phys. 9, 7577–7589 (2009)

    ADS  CAS  Article  Google Scholar 

  21. Douglass, A. R. et al. Interhemispheric differences in springtime production of HCl and ClONO2 in the polar vortices. J. Geophys. Res. 100, 13967–13978 (1995)

    ADS  Article  Google Scholar 

  22. Manney, G. L. et al. Chemical depletion of ozone in the Arctic lower stratosphere during winter 1992–93. Nature 370, 429–434 (1994)

    ADS  CAS  Article  Google Scholar 

  23. Tegtmeier, S., Rex, M., Wohltmann, I. & Krüger, K. Relative importance of dynamical and chemical contributions to Arctic wintertime ozone. Geophys. Res. Lett. 35 L17801 http://dx.doi.org/10.1029/2008GL034250 (2008)

    ADS  Article  Google Scholar 

  24. Rex, M. et al. In situ measurements of stratospheric ozone depletion rates in the Arctic winter of 1991/1992: a Lagrangian approach. J. Geophys. Res. 103, 5843–5853 (1998)

    ADS  CAS  Article  Google Scholar 

  25. Manney, G. L. et al. Lagrangian transport calculations using UARS data. Part II: ozone. J. Atmos. Sci. 52, 3069–3081 (1995)

    ADS  Article  Google Scholar 

  26. Manney, G. L. et al. Variability of ozone loss during Arctic winter (1991–2000) estimated from UARS Microwave Limb Sounder measurements. J. Geophys. Res.. 108, 4149, http://dx.doi.org/10.1029/2002JD002634 (2003)

    Article  Google Scholar 

  27. Wohltmann, I., Lehmann, R. & Rex, M. The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000. Geosci. Model Dev. 3, 585–601 (2010)

    ADS  Article  Google Scholar 

  28. von der Gathen, P. et al. Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92. Nature 375, 131–134 (1995)

    ADS  CAS  Article  Google Scholar 

  29. Gernandt, H. The vertical ozone distribution above the GDR-research base, Antarctica in 1985. Geophys. Res. Lett. 14, 84–86 (1987)

    ADS  CAS  Article  Google Scholar 

  30. Rex, M. et al. Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389, 835–838 (1997)

    ADS  CAS  Article  Google Scholar 

  31. Manney, G. L., Froidevaux, L., Santee, M. L., Zurek, R. W. & Waters, J. W. MLS observations of Arctic ozone loss in 1996–97. Geophys. Res. Lett. 24, 2697–2700 (1997)

    ADS  CAS  Article  Google Scholar 

  32. Manney, G. L., Santee, M. L., Froidevaux, L., Waters, J. W. & Zurek, R. W. Polar vortex conditions during the 1995–96 Arctic winter: meteorology and MLS ozone. Geophys. Res. Lett. 23, 3203–3206 (1996)

    ADS  CAS  Article  Google Scholar 

  33. Petzoldt, K. The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere. Ann. Geophys. 17, 231–241 (1999)

    ADS  CAS  Article  Google Scholar 

  34. Hood, L. L., Soukharev, B. E., Fromm, M. & McCormack, J. P. Origin of extreme ozone minima at middle to high northern latitudes. J. Geophys. Res. 106, 20925–20940 (2001)

    ADS  CAS  Article  Google Scholar 

  35. Manney, G. L. et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett.. 36, L12815, http://dx.doi.org/10.1029/2009GL038586 (2009)

    ADS  Article  Google Scholar 

  36. Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009)

    ADS  CAS  Article  Google Scholar 

  37. Newman, P. A., Nash, E. R. & Rosenfield, J. E. What controls the temperatures of the Arctic stratosphere during the spring? J. Geophys. Res. 106, 19999–20010 (2001)

    ADS  Article  Google Scholar 

  38. Polvani, L. M. & Saravanan, R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci. 57, 3663–3685 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  39. Orsolini, Y. J., Karpechko, A. Y. & Nikulin, G. Variability of the Northern Hemisphere polar stratospheric cloud potential: the role of North Pacific disturbances. Q. J. R. Meteorol. Soc. 135, 1020–1029 (2009)

    ADS  Article  Google Scholar 

  40. Woollings, T., Charlton-Perez, A., Ineson, S., Marshall, G. & Masato, G. Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res.. 115, D06108, http://dx.doi.org/10.1029/2009JD012742 (2010)

    ADS  Article  Google Scholar 

  41. Butchart, N. et al. Multimodel climate and variability of the stratosphere. J. Geophys. Res.. 116, D05102, http://dx.doi.org/10.1029/2010JD014995 (2011)

    ADS  Article  Google Scholar 

  42. Charlton-Perez, A. et al. The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmos. Chem. Phys. 10, 9473–9486 (2010)

    ADS  CAS  Article  Google Scholar 

  43. Reinecker, M. M. et al. MERRA — NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24 3624–3648 http://dx.doi.org/10.1175/JCLI-D-11-00015.1 (2011)

    ADS  Article  Google Scholar 

  44. Hunt, W. H. et al. CALIPSO lidar description and performance assessment. J. Atmos. Ocean. Technol. 26, 1214–1228 (2009)

    ADS  Article  Google Scholar 

  45. Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Rem. Sens. 44, 1075–1092 (2006)

    ADS  Article  Google Scholar 

  46. Levelt, P. F. et al. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Rem. Sens. 44, 1093–1101 (2006)

    ADS  Article  Google Scholar 

  47. Rex, M. et al. Chemical ozone loss in the Arctic winter 1994/95 as determined by the Match technique. J. Atmos. Chem. 32, 35–59 (1999)

    CAS  Article  Google Scholar 

  48. Rex, M. et al. Chemical depletion of Arctic ozone in winter 1999/2000. J. Geophys. Res.. 107, 8276, http://dx.doi.org/10.1029/2001JD000533 (2002)

    Article  Google Scholar 

  49. Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. On the use and significance of isentropic potential-vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946 (1985)

    ADS  Article  Google Scholar 

  50. McPeters, R. D. et al. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Technical Publication 1998-206895, 1998)

    Google Scholar 

  51. Manney, G. L., Zurek, R. W., Gelman, M. E., Miller, A. J. & Nagatani, R. The anomalous Arctic lower stratospheric polar vortex of 1992–1993. Geophys. Res. Lett. 21, 2405–2408 (1994)

    ADS  Article  Google Scholar 

  52. Manney, G. L. et al. Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura MLS. J. Geophys. Res.. 112, D24S50, http://dx.doi.org/10.1029/2007JD008709 (2007)

    ADS  Article  Google Scholar 

  53. Butchart, N. & Remsberg, E. E. The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci. 43, 1319–1339 (1986)

    ADS  Article  Google Scholar 

  54. Hanson, D. & Mauersberger, K. Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere. Geophys. Res. Lett. 15, 855–858 (1988)

    ADS  CAS  Article  Google Scholar 

  55. Hostetler, C. A. et al. CALIOP algorithm theoretical basis document. Calibration and Level 1 data products (Technical Report, NASA Langley Research Center, 2006); available at 〈 http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf〉.

  56. Livesey, N. J. et al. Version 3.3 Level 2 data quality and description document. (Technical Report JPL D-33509, Jet Propulsion Laboratory, 2010); available at 〈http://mls.jpl.nasa.gov/data/v3-3_data_quality_document.pdf〉.

  57. Smit, H. G. et al. Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: insights from the Jülich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res.. 112, D19306, http://dx.doi.org/10.1029/2006JD007308 (2007)

    ADS  Article  Google Scholar 

  58. Krämer, M. et al. Intercomparison of stratospheric chemistry models under polar vortex conditions. J. Atmos. Chem. 45, 51–77 (2003)

    Article  Google Scholar 

  59. McPeters, R. et al. Validation of the Aura Ozone Monitoring Instrument total column ozone product. J. Geophys. Res.. 113, D15S14, http://dx.doi.org/10.1029/2007JD008802 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the MLS (especially A. Lambert, D. Miller, W. Read, M. Schwartz, P. Stek, J. Waters), OMI (especially P. K. Bhartia, G. Jaross, G. Labow), CALIPSO and Match science teams, as well as A. Douglass, J. Joiner and the Aura project, for their support. We also thank W. Daffer and R. Fuller for programming assistance at JPL; the many observers whose work went into obtaining the ozone-sonde measurements; the ozone scientists who participated in the discussion of the 2011 Arctic ozone loss and appropriate definition of an Arctic ozone hole (including, but not limited to, N. Harris, G. Bodeker, G. Braathen, M. Kurylo, R. Salawitch); and especially P. Newman and K. Minschwaner for discussions and comments. Meteorological analyses were provided by NASA’s Global Modeling and Assimilation Office (GMAO) and by the European Centre for Medium-Range Weather Forecasts. We thank S. Pawson of GMAO for advice on usage of the MERRA reanalysis. Ozone-sonde measurements at Alert, Eureka, Resolute Bay, Churchill and Goose Bay were funded by Environment Canada. Additional ozone sondes were flown at Eureka as part of the Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaign and were funded by the Canadian Space Agency. Academy of Finland provided partial funding for performing and processing ozone-sonde measurements in Jokioinen and Sodankylä. Ozone soundings and work at AWI were partially funded by the EC DG Research through the RECONCILE project. Work at the Jet Propulsion Laboratory, California Institute of Technology, and at Science Systems and Applications Inc., was done under contract with NASA.

Author information

Authors and Affiliations

Authors

Contributions

G.L.M. and M.L.S. led analysis of MLS data; M.R. led analysis of ozone-sonde data; G.L.M. led the meteorological data analysis. M.R., G.L.M., N.J.L. and I.W. did chemical ozone loss calculations. R.L. and M.R. performed and analysed chemical box model calculations. M.C.P. and L.R.P. provided CALIPSO/CALIOP data analyses; E.R.N. and P.V. provided TOMS and OMI data analyses. L.F., M.L.S., G.L.M. and N.J.L. provided expertise on MLS data usage; D.P.H., P.V. and P.F.L. provided expertise on OMI data usage. J.D., V.D., H.G., B.J., R.K., E.K., N.L., A.M., C.T.M., H.N., M.C.P., D.W.T., P.v.d.G., K.A.W. and N.S.Z. were responsible for performing and processing ozone-sonde measurements. All authors contributed comments on the manuscript. G.L.M., M.L.S. and M.R. jointly compiled and synthesized the results. G.L.M. and M.L.S. wrote the paper.

Corresponding authors

Correspondence to Gloria L. Manney or Michelle L. Santee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

CALIOP data are publicly available at http://eosweb.larc.nasa.gov/PRODOCS/calipso/table_calipso.html, MLS data at http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/MLS, OMI data at http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omto3_v003.shtml, and GEOS-5 MERRA analyses through http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings/merra/. The balloon-borne Antarctic ozone-sonde data recorded in 1985 and the following years are publicly available at http://dx.doi.org/10.1594/PANGAEA.547983.

Supplementary information

Supplementary Information

The file contains a Supplementary Discussion, Supplementary Figures 1-7 with legends and additional references. (PDF 2872 kb)

Supplementary Data 1A

The data shows Arctic Ozone Data (ZIP 5905 kb)

Supplementary Data 1B

The data shows Arctic Ozone Station Information (XLS 10 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manney, G., Santee, M., Rex, M. et al. Unprecedented Arctic ozone loss in 2011. Nature 478, 469–475 (2011). https://doi.org/10.1038/nature10556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10556

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing