Structural basis of RNA recognition and activation by innate immune receptor RIG-I


Retinoic-acid-inducible gene-I (RIG-I; also known as DDX58) is a cytoplasmic pathogen recognition receptor that recognizes pathogen-associated molecular pattern (PAMP) motifs to differentiate between viral and cellular RNAs. RIG-I is activated by blunt-ended double-stranded (ds)RNA with or without a 5′-triphosphate (ppp), by single-stranded RNA marked by a 5′-ppp1 and by polyuridine sequences2,3. Upon binding to such PAMP motifs, RIG-I initiates a signalling cascade that induces innate immune defences and inflammatory cytokines to establish an antiviral state. The RIG-I pathway is highly regulated and aberrant signalling leads to apoptosis, altered cell differentiation, inflammation, autoimmune diseases and cancer4,5. The helicase and repressor domains (RD) of RIG-I recognize dsRNA and 5′-ppp RNA to activate the two amino-terminal caspase recruitment domains (CARDs) for signalling. Here, to understand the synergy between the helicase and the RD for RNA binding, and the contribution of ATP hydrolysis to RIG-I activation, we determined the structure of human RIG-I helicase-RD in complex with dsRNA and an ATP analogue. The helicase-RD organizes into a ring around dsRNA, capping one end, while contacting both strands using previously uncharacterized motifs to recognize dsRNA. Small-angle X-ray scattering, limited proteolysis and differential scanning fluorimetry indicate that RIG-I is in an extended and flexible conformation that compacts upon binding RNA. These results provide a detailed view of the role of helicase in dsRNA recognition, the synergy between the RD and the helicase for RNA binding and the organization of full-length RIG-I bound to dsRNA, and provide evidence of a conformational change upon RNA binding. The RIG-I helicase-RD structure is consistent with dsRNA translocation without unwinding and cooperative binding to RNA. The structure yields unprecedented insight into innate immunity and has a broader impact on other areas of biology, including RNA interference and DNA repair, which utilize homologous helicase domains within DICER and FANCM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural overview of RIG-I helicase-RD.
Figure 2: Interactions of the RIG-I helicase-RD with dsRNA and ADP•BeF3.
Figure 3: Comparison of RIG-I helicase-RD with HCV NS3h and RD bound to 5′-OH and 5′-ppp dsRNA.
Figure 4: Limited trypsin digestion, DSF and SAXS analyses of helicase-RD and full-length RIG-I in the presence and absence of dsRNA.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates have been deposited in the Protein Data Bank under accession code 3TMI.


  1. 1

    Schlee, M. et al. Approaching the RNA ligand for RIG-I? Immunol. Rev. 227, 66–74 (2009)

    CAS  Article  Google Scholar 

  2. 2

    Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Uzri, D. & Gehrke, L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J. Virol. 83, 4174–4184 (2009)

    CAS  Article  Google Scholar 

  4. 4

    Matsumiya, T. & Stafforini, D. M. Function and regulation of retinoic acid-inducible gene-I. Crit. Rev. Immunol. 30, 489–513 (2010)

    CAS  Article  Google Scholar 

  5. 5

    Chattopadhyay, S. et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J. 29, 1762–1773 (2010)

    CAS  Article  Google Scholar 

  6. 6

    Sun, Z., Ren, H., Liu, Y., Teeling, J. L. & Gu, J. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J. Virol. 85, 1036–1047 (2011)

    CAS  Article  Google Scholar 

  7. 7

    Malathi, K., Dong, B., Gale, M., Jr & Silverman, R. H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Lu, C., Ranjith-Kumar, C. T., Hao, L., Kao, C. C. & Li, P. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res. 39, 1565–1575 (2011)

    CAS  Article  Google Scholar 

  9. 9

    Lu, C. et al. The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18, 1032–1043 (2010)

    CAS  Article  Google Scholar 

  10. 10

    Wang, Y. et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Struct. Mol. Biol. 17, 781–787 (2010)

    CAS  Article  Google Scholar 

  11. 11

    Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007)

    CAS  Article  Google Scholar 

  12. 12

    Fairman-Williams, M. E., Guenther, U. P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Dürr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005)

    Article  Google Scholar 

  14. 14

    Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070–1074 (2009)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29, 428–440 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Gu, M. & Rice, C. M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl Acad. Sci. USA 107, 521–528 (2009)

    ADS  Article  Google Scholar 

  17. 17

    Lam, A. M., Keeney, D. & Frick, D. N. Two novel conserved motifs in the hepatitis C virus NS3 protein critical for helicase action. J. Biol. Chem. 278, 44514–44524 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl Acad. Sci. USA 104, 582–587 (2007)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Polach, K. J. & Uhlenbeck, O. C. Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry 41, 3693–3702 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Theissen, B., Karow, A. R., Kohler, J., Gubaev, A. & Klostermeier, D. Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase. Proc. Natl Acad. Sci. USA 105, 548–553 (2008)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Loo, Y. M. et al. Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc. Natl Acad. Sci. USA 103, 6001–6006 (2006)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005)

    CAS  Article  Google Scholar 

  28. 28

    Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Binder, M. et al. Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid inducible gene-I (RIG-I). J. Biol. Chem. (2011)

  30. 30

    Tang, G. Q., Bandwar, R. P. & Patel, S. S. Extended upstream A-T sequence increases T7 promoter strength. J. Biol. Chem. 280, 40707–40713 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Tang, G. Q., Bandwar, R. P. & Patel, S. S. Extended upstream A-T sequence increases T7 promoter strength. J. Biol. Chem. 280, 40707–40713 (2005)

    CAS  Article  Google Scholar 

  32. 32

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    CAS  Article  Google Scholar 

  33. 33

    Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  34. 34

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  35. 35

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221 (2010)

    CAS  Article  Google Scholar 

  36. 36

    Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003)

    CAS  Article  Google Scholar 

  37. 37

    Semenyuk, A. V. & Svergun, D. I. GNOM: a program package for small-angle scattering data processing. J. Appl. Cryst. 24, 537–540 (1991)

    Article  Google Scholar 

  38. 38

    Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)

    CAS  ADS  Article  Google Scholar 

  39. 39

    Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860–864 (2003)

    CAS  Article  Google Scholar 

  40. 40

    Petoukhov, M. V. & Svergun, D. I. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys. J. 89, 1237–1250 (2005)

    CAS  Article  Google Scholar 

  41. 41

    Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007)

    Article  Google Scholar 

  42. 42

    Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols 2, 2212–2221 (2007)

    CAS  Article  Google Scholar 

Download references


We acknowledge access to beamlines X29 at the NSLS (National Synchrotron Light Source), LRL-CAT at APS (Advanced Photon Source), and G1 and F1 at CHESS (Cornell High Energy Synchrotron Source) and thank the NSLS, APS and CHESS staff. NSLS and APS are supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 and DE-AC02-06CH11357, respectively. CHESS is supported by the NSF and NIH/NIGMS through NSF award DMR-0936384, and the MacCHESS resource is supported by NIH/NCRR award RR-01646. Use of the LRL-CAT beamline facilities at Sector 31 was provided by Eli Lilly & Company. We would like to thank V. Rajagopal for initiating the biochemical experiments and guiding the project in the early stages. We thank E. Arnold, H. Berman, S. K. Burley, R. Gillilian, L. Morisco, W. Olson, T. Saito, A. Shatkin, A. Stock, H. Yang and M. Zhuravieva for providing helpful comments and assistance. This work was supported by NIH grants GM55310 to S.S.P. and AI080659 to J.M.

Author information




The project was initiated by M.G., J.M. and S.S.P. J.M. and S.S.P. designed and supervised the project. M.G. provided reagents and consultation. F.J. designed protein constructs and established purification protocols. A.R. generated all RNA reagents. F.J. and A.R. purified the complex and set up crystallization screens. F.J. optimized the crystal for data collection. J.M., M.T.M., F.J. and A.R. collected, processed and analysed the X-ray crystallographic data. M.T.M., F.J. and J.M. collected and analysed the SAXS data. A.R., G.-Q.T. and S.S.P. collected and analysed the RNA binding and ATPase assays. F.J. performed limited proteolysis and thermal melting assay. S.S.P. and J.M. wrote the paper and all authors contributed to editing.

Corresponding authors

Correspondence to Smita S. Patel or Joseph Marcotrigiano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 with legends and Supplementary Tables 1-2. (PDF 3996 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, F., Ramanathan, A., Miller, M. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–427 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing