Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit


Control over quantum dynamics of open systems is one of the central challenges in quantum science and engineering. Coherent optical techniques, such as coherent population trapping involving dark resonances1,2, are widely used to control quantum states of isolated atoms and ions. In conjunction with spontaneous emission, they allow for laser cooling of atomic motion3, preparation and manipulation of atomic states4, and rapid quantum optical measurements that are essential for applications in metrology5,6,7. Here we show that these techniques can be applied to monitor and control individual atom-like impurities, and their local environment8,9,10,11, in the solid state. Using all-optical manipulation of the electronic spin of an individual nitrogen–vacancy colour centre in diamond, we demonstrate optical cooling, real-time measurement and conditional preparation of its nuclear spin environment by post-selection. These methods offer potential applications ranging from all-optical nanomagnetometry to quantum feedback control of solid-state qubits, and may lead to new approaches for quantum information storage and processing

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent population trapping in NV centres.
Figure 2: Optical control and conditional preparation of the proximal 14 N nuclear spin.
Figure 3: Observation of instantaneous Overhauser field from the 13 C spin bath.
Figure 4: Measurement-based preparation of 13 C spin bath.

Similar content being viewed by others


  1. Scully, M. O. & Zubairy, M. S. Quantum Optics 222–225 (Cambridge Univ. Press, 1997)

    Book  Google Scholar 

  2. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Scully, M. O. & Fleischhauer, M. High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 69, 1360–1363 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Vanier, J. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421–442 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Issler, M. et al. Nuclear spin cooling using Overhauser-field selective coherent population trapping. Phys. Rev. Lett. 105, 267202 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Stepanenko, D., Burkard, G., Giedke, G. & Imamoglu, A. Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett. 96, 136401 (2006)

    Article  ADS  Google Scholar 

  11. Giedke, G., Taylor, J. M., D'Alessandro, D., Lukin, M. D. & Imamoglu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006)

    Article  ADS  Google Scholar 

  12. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  13. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Article  Google Scholar 

  14. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Maze, J. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Balasubramanian, G. et al. Nanoscale imaging magnetometery with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010)

    Article  ADS  Google Scholar 

  20. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)

    Article  ADS  Google Scholar 

  21. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. N. J. Phys. 13, 025025 (2011)

    Article  Google Scholar 

  23. Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Klauser, D., Coish, W. A. & Loss, D. Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev. B 73, 205302 (2006)

    Article  ADS  Google Scholar 

  25. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Chen, G., Bergman, D. L. & Balents, L. Semiclassical dynamics and long-time asymptotics of the central-spin problem in a quantum dot. Phys. Rev. B 76, 045312 (2007)

    Article  ADS  Google Scholar 

  28. Bardou, F., Bouchaud, J.-P., Aspect, A. & Cohen-Tannoudji, C. Lévy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest (Cambridge Univ. Press, 2002)

    MATH  Google Scholar 

  29. Rudner, M. S., Vandersypen, L. M. K., Vuletic, V. & Levitov, L. S. Generating entanglement and squeezed states of nuclear spins in quantum dots. Preprint at 〈〉 (2011)

  30. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009)

    Article  ADS  CAS  Google Scholar 

Download references


We thank A. Aspect, J. I. Cirac, G. Giedke, M. Gullans, J. Hodges, M. Issler, V. Jacques, F. Jelezko, E. Kessler, A. Kubanek, J. McArthur, A. Pick, A. Sipahigil, J. Taylor, S. Yelin and A. S. Zibrov for discussions and experimental help. This work was supported by the NSF, NSF-funded CUA, DARPA (QUEST and QUASAR programmes), ARO MURI, the NDSEG Fellowship, the Packard Foundation and an ERC Advanced Investigator Grant. The content of this paper does not necessarily reflect the position or the policy of the US government, and no official endorsements should be inferred.

Author information

Authors and Affiliations



All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, which includes Supplementary Experimental details, Supplementary Data and a Supplementary Discussion; Supplementary Figures 1-10 with legends and additional references. (PDF 1080 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togan, E., Chu, Y., Imamoglu, A. et al. Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 478, 497–501 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing