Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatio-temporal transcriptome of the human brain

Abstract

Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global spatio-temporal dynamics of gene expression.
Figure 2: Sex-biased gene expression.
Figure 3: Sex-biased differential exon usage.
Figure 4: Global co-expression networks and gene modules.
Figure 5: Trajectories of genes associated with neurodevelopmental processes.
Figure 6: Association between SNPs and gene expression.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Exon array have been deposited in the NCBI Gene Expression Omnibus under accession number GSE25219 and genotyping data have been deposited in the NCBI database of Genotypes and Phenotypes under accession number phs000406.v1.p1.

References

  1. Kostovic, I. & Judas, M. Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev. Med. Child Neurol. 48, 388–393 (2006)

    Article  Google Scholar 

  2. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nature Rev. Neurosci. 10, 724–735 (2009)

    Article  CAS  Google Scholar 

  3. Rubenstein, J. L. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J. Child Psychol. Psychiatry 52, 339–355 (2011)

    Article  Google Scholar 

  4. Preuss, T., Cáceres, M., Oldham, M. & Geschwind, D. Human brain evolution: insights from microarrays. Nature Rev. Genet. 5, 850–860 (2004)

    Article  CAS  Google Scholar 

  5. Hill, R. S. & Walsh, C. A. Molecular insights into human brain evolution. Nature 437, 64–67 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002)

    Article  CAS  Google Scholar 

  7. Meyer-Lindenberg, A. & Weinberger, D. R. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Rev. Neurosci. 7, 818–827 (2006)

    Article  CAS  Google Scholar 

  8. Insel, T. Rethinking schizophrenia. Nature 468, 187–193 (2010)

    Article  ADS  CAS  Google Scholar 

  9. State, M. The genetics of child psychiatric disorders: focus on autism and Tourette syndrome. Neuron 68, 254–269 (2010)

    Article  CAS  Google Scholar 

  10. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet. 34, 27–29 (2003)

    Article  CAS  Google Scholar 

  11. Vawter, M. et al. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology 29, 373–384 (2004)

    Article  CAS  Google Scholar 

  12. Weickert, C. et al. Transcriptome analysis of male-female differences in prefrontal cortical development. Mol. Psychiatry 14, 558–561 (2009)

    Article  CAS  Google Scholar 

  13. Reinius, B. & Jazin, E. Prenatal sex differences in the human brain. Mol. Psychiatry 14, 988–989 (2009)

    Article  Google Scholar 

  14. Abrahams, B. et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl Acad. Sci. USA 104, 17849–17854 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Sun, T. et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308, 1794–1798 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Johnson, M. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009)

    Article  CAS  Google Scholar 

  17. Somel, M. et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 20, 1207–1218 (2010)

    Article  CAS  Google Scholar 

  18. Ip, B. et al. Investigating gradients of gene expression involved in early human cortical development. J. Anat. 217, 300–311 (2010)

    Article  CAS  Google Scholar 

  19. Licatalosi, D. D. & Darnell, R. B. Splicing regulation in neurologic disease. Neuron 52, 93–101 (2006)

    Article  CAS  Google Scholar 

  20. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006)

    Article  CAS  Google Scholar 

  21. Svenningsson, P. et al. Alterations in 5–HT1B receptor function by p11 in depression-like states. Science 311, 77–80 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011)

    Article  CAS  Google Scholar 

  24. Huffaker, S. J. et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nature Med. 15, 509–518 (2009)

    Article  CAS  Google Scholar 

  25. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Ewart, A. K. et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nature Genet. 5, 11–16 (1993)

    Article  CAS  Google Scholar 

  27. Südhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008)

    Article  ADS  Google Scholar 

  28. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, article17 (2005)

    Article  MathSciNet  Google Scholar 

  29. Hansen, D. V., Rubenstein, J. L. & Kriegstein, A. R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011)

    Article  CAS  Google Scholar 

  30. Hevner, R. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001)

    Article  CAS  Google Scholar 

  31. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005)

    Article  CAS  Google Scholar 

  32. Chen, B., Schaevitz, L. & McConnell, S. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Chen, J., Rasin, M., Kwan, K. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Ariani, F. et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 83, 89–93 (2008)

    Article  CAS  Google Scholar 

  35. Kwan, K. et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc. Natl Acad. Sci. USA 105, 16021–16026 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Knoth, R. et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE 5, e8809 (2010)

    Article  ADS  Google Scholar 

  37. Han, W. et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl Acad. Sci. USA 108, 3041–3046 (2011)

    Article  ADS  CAS  Google Scholar 

  38. McKenna, W. L. et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 31, 549–564 (2011)

    Article  CAS  Google Scholar 

  39. Perroud, N. et al. Genome-wide association study of increasing suicidal ideation during antidepressant treatment in the GENDEP project. Pharmacogenomics J. advance online publication, 〈http://dx.doi.org/10.1038/tpj.2010.70〉 (2010)

  40. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009)

    Article  ADS  CAS  Google Scholar 

  41. Petanjek, Z., Judas, M., Kostovic´, I. & Uylings, H. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb. Cortex 18, 915–929 (2008)

    Article  Google Scholar 

  42. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997)

    Article  CAS  Google Scholar 

  43. Stranger, B. E. et al. Population genomics of human gene expression. Nature Genet. 39, 1217–1224 (2007)

    Article  CAS  Google Scholar 

  44. Heinzen, E. L. et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol. 6, e1 (2008)

    Article  Google Scholar 

  45. Liu, C. et al. Whole-genome association mapping of gene expression in the human prefrontal cortex. Mol. Psychiatry 15, 779–784 (2010)

    Article  CAS  Google Scholar 

  46. Gibbs, J. R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010)

    Article  Google Scholar 

  47. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007)

    Article  CAS  Google Scholar 

  48. Webster, J. A. et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84, 445–458 (2009)

    Article  CAS  Google Scholar 

  49. Ren, C., Ren, C. H., Li, L., Goltsov, A. A. & Thompson, T. C. Identification and characterization of RTVP1/GLIPR1-like genes, a novel p53 target gene cluster. Genomics 88, 163–172 (2006)

    Article  CAS  Google Scholar 

  50. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 10.1038/nature10524 (this issue)

Download references

Acknowledgements

We thank A. Belanger, V. Imamovic, R. Johnson, P. Larton, S. Lindsay, B. Poulos, J. Rajan, D. Rimm and R. Zielke for assistance with tissue acquisition, D. Singh for technical assistance, I. Kostovic and Z. Petanjek for dendrite measurements, P. Levitt for suggesting the inclusion of ITC in the study, and D. Karolchik and A. Zweig for help in creating tracks for the UCSC Genome Browser. We also thank A. Beckel-Mitchener, M. Freund, M. Gerstein, D. Geschwind, T. Insel, M. Judas, J. Knowles, E. Lein, P. Levitt, N. Parikshak and members of the Sestan laboratory for discussions and criticism. Tissue was obtained from several sources including the Human Fetal Tissue Repository at the Albert Einstein College of Medicine, the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland, the Laboratory of Developmental Biology at the University of Washington (supported by grant HD000836 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development) and the Joint MRC/Wellcome Trust Human Developmental Biology Resource (http://hdbr.org) at the IHG, Newcastle Upon Tyne (UK funding awards G0700089 and GR082557). Support for predoctoral fellowships was provided by the China Scholarship Council (Y.Z.), the Portuguese Foundation for Science and Technology (A.M.M.S.), the Samsung Scholarship Foundation (Y.S.), a Fellowship of the German Academic Exchange Service – DAAD (S. Mayer) and NIDA grant DA026119 (T.G.). This work was supported by grants from the US National Institutes of Health (MH081896, MH089929, NS054273), the Kavli Foundation and NARSAD, and by a James S. McDonnell Foundation Scholar Award (N.S.).

Author information

Authors and Affiliations

Authors

Contributions

H.J.K., Y.I.K., A.M.M.S., M.P., K.A.M., G.S., Y.S., M.B.J., Z.K., S. Mayer, S.F., S.U., S. Mane and N.S. performed and analysed the experiments. F.C., Y.Z., X.X., M.L., T.G. and M.R. analysed the data. Z.K., A.M.M.S., M.P., G.S., S.N.L, A.V., D.R.W., T.M.H., A.H., J.E.K. and N.S. participated in tissue procurement and examination. N.S. designed the study and wrote the manuscript, which all authors commented and edited.

Corresponding author

Correspondence to Nenad Šestan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Data and Methods (1-9 ) - see Contents for full details, (10 ) Supplementary References, (11) Legends for Supplementary Tables 1-17 (see separate excel file for tables), and (12) Supplementary Figures 1-25 with legends. (PDF 7421 kb)

Supplementary Tables

This file contains Supplementary Tables 1-17 (see Supplementary Information file for more details). (XLS 3463 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Kawasawa, Y., Cheng, F. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011). https://doi.org/10.1038/nature10523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10523

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing