Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon

Abstract

Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H2S) and carbon disulphide (CS2)1,2. The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS2 into H2S and carbon dioxide (CO2), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS2 hydrolase from Acidianus A1-3. The enzyme monomer displays a typical β-carbonic anhydrase fold and active site, yet CO2 is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical β-carbonic anhydrases and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme’s substrate specificity for CS2, which is hydrophobic. The transposon sequences that surround the gene encoding this CS2 hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient β-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS2 metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neighbour-joining phylogenetic tree showing the evolutionary relationship between carbonic anhydrases (CAs) and the newly discovered CS 2 hydrolases.
Figure 2: X-ray crystal structure of the Acidianus A1-3 CS 2 hydrolase.
Figure 3: The CS 2 hydrolase active site and the entrance to the active site.
Figure 4: Effect of mutations in the access tunnel on activity.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Data deposits

The sequence for the CS2 hydrolase from Acidianus A1-3 has been deposited in GenBank under the accession number HM805096. Atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank under accession numbers 3TEO and 3TEN.

References

  1. Allard, P., Maiorani, A., Tedesco, D., Cortecci, G. & Turi, B. Isotopic study of the origin of sulfur and carbon in solfatara fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 48, 139–159 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Vasilakos, C., Maggos, T., Bartzis, J. G. & Papagiannakopoulos, P. Determination of atmospheric sulfur compounds near a volcanic area in Greece. J. Atmos. Chem. 52, 101–116 (2005)

    Article  CAS  Google Scholar 

  3. Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA 106, 8605–8610 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Fuchs, T., Huber, H., Burggraf, S. & Stetter, K. O. 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb nov. Syst. Appl. Microbiol. 19, 56–60 (1996)

    Article  CAS  Google Scholar 

  5. He, Z., Li, Y., Zhou, P. & Liu, S.-J. Cloning and heterologous expression of a sulfur oxygenase/reductase gene from the thermoacidophilic archaeon Acidianus sp. S5 in Escherichia coli . FEMS Microbiol. Lett. 193, 217–221 (2000)

    Article  CAS  Google Scholar 

  6. Pol, A., van der Drift, C. & Op den Camp, H. J. M. Isolation of a carbon disulfide utilizing Thiomonas sp and its application in a biotrickling filter. Appl. Microbiol. Biotechnol. 74, 439–446 (2007)

    Article  CAS  Google Scholar 

  7. Jordan, S. L. et al. Autotrophic growth on carbon disulfide is a property of novel strains of Paracoccus denitrificans . Arch. Microbiol. 168, 225–236 (1997)

    Article  CAS  Google Scholar 

  8. Sinnecker, S., Brauer, M., Koch, W. & Anders, E. CS2 fixation by carbonic anhydrase model systems—a new substrate in the catalytic cycle. Inorg. Chem. 40, 1006–1013 (2001)

    Article  CAS  Google Scholar 

  9. Notni, J., Schenk, S., Protoschill-Krebs, G., Kesselmeier, J. & Anders, E. The missing link in COS metabolism: a model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue. ChemBioChem 8, 530–536 (2007)

    Article  CAS  Google Scholar 

  10. Schenk, S., Kesselmeier, J. & Anders, E. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase? Chem. Eur. J. 10, 3091–3105 (2004)

    Article  CAS  Google Scholar 

  11. Protoschill-Krebs, G., Wilhelm, C. & Kesselmeier, J. Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA). Atmos. Environ. 30, 3151–3156 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Blezinger, S., Wilhelm, C. & Kesselmeier, J. Enzymatic consumption of carbonyl sulfide (COS) by marine algae. Biogeochemistry 48, 185–197 (2000)

    Article  CAS  Google Scholar 

  13. Chin, M. & Davis, D. D. Global sources and sinks of OCS and CS2 and their distributions. Glob. Biogeochem. Cycles 7, 321–337 (1993)

    Article  CAS  Google Scholar 

  14. Haritos, V. S. & Dojchinov, G. Carbonic anhydrase metabolism is a key factor in the toxicity of CO2 and COS but not CS2 toward the flour beetle Tribolium castaneum [Coleoptera: Tenebrionidae]. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140, 139–147 (2005)

    Article  Google Scholar 

  15. Smith, K. S. & Ferry, J. G. A plant-type (β-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum . J. Bacteriol. 181, 6247–6253 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alber, B. E. et al. Kinetic and spectroscopic characterization of the γ-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila . Biochemistry 38, 13119–13128 (1999)

    Article  CAS  Google Scholar 

  17. Khalifah, R. G. The carbon dioxide hydration activity of carbonic anhydrase. J. Biol. Chem. 246, 2561–2573 (1971)

    CAS  PubMed  Google Scholar 

  18. Lane, T. W. et al. A cadmium enzyme from a marine diatom. Nature 435, 42 (2005)

    Article  ADS  CAS  Google Scholar 

  19. MacAuley, S. R. et al. The archetype γ-class carbonic anhydrase (Cam) contains iron when synthesized in vivo . Biochemistry 48, 817–819 (2009)

    Article  CAS  Google Scholar 

  20. Kimber, M. S. & Pai, E. F. The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J. 19, 1407–1418 (2000)

    Article  CAS  Google Scholar 

  21. Cao, Z., Roszak, A. W., Gourlay, L. J., Lindsay, J. G. & Isaacs, N. W. Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13, 1661–1664 (2005)

    Article  CAS  Google Scholar 

  22. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Strop, P., Smith, K. S., Iverson, T. M., Ferry, J. G. & Rees, D. C. Crystal structure of the “cab”-type β class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum . J. Biol. Chem. 276, 10299–10305 (2001)

    Article  CAS  Google Scholar 

  24. Suarez Covarrubias, A. et al. Structure and function of carbonic anhydrases from Mycobacterium tuberculosis . J. Biol. Chem. 280, 18782–18789 (2005)

    Article  CAS  Google Scholar 

  25. Teng, Y. B. et al. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Nce103. BMC Struct. Biol. 9, 67–76 (2009)

    Article  Google Scholar 

  26. Schlicker, C. et al. Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans . J. Mol. Biol. 385, 1207–1220 (2009)

    Article  CAS  Google Scholar 

  27. Holm, L., Kaarlainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 25, 2780–2781 (2008)

    Article  Google Scholar 

  28. Rowlett, R. S. Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim. Biophys. Acta 1804, 362–373 (2010)

    Article  CAS  Google Scholar 

  29. Smith, K. S., Jakubzick, C., Whittam, T. S. & Ferry, J. G. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl Acad. Sci. USA 96, 15184–15189 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Bornberg-Bauer, E., Huylmans, A.-K. & Sikosek, T. How do new proteins arise? Curr. Opin. Struct. Biol. 20, 390–396 (2010)

    Article  CAS  Google Scholar 

  31. Allen, M. B. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32, 270–277 (1959)

    Article  CAS  Google Scholar 

  32. Vishniac, W. & Santer, M. Thiobacilli. Bacteriol. Rev. 21, 195–213 (1957)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Derikx, P. J. L., Op den Camp, H. J. M., van der Drift, C., Van Griensven, L. J. L. D. & Vogels, G. D. Odorous sulphur-compounds emitted during production of compost used as a substrate in mushroom cultivation. Appl. Environ. Microbiol. 56, 176–180 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wessels, H. J., Gloerich, J., van der Biezen, E., Jetten, M. S. M. & Kartal, B. Liquid chromatography–mass spectrometry-based proteomics of Nitrosomonas . Methods Enzymol. 486, 465–482 (2011)

    Article  CAS  Google Scholar 

  35. Kowalchuk, G. A., de Bruijn, F. J., Head, I. M., Akkermans, A. D., van Elsas, J. D., eds. Molecular Microbial Ecology Manual 2nd edn, Vol. 1 (Kluwer Academic, 2004)

    Book  Google Scholar 

  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)

    Article  CAS  Google Scholar 

  37. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    CAS  PubMed  Google Scholar 

  38. Felsenstein, J. Confidence imits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  39. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965)

    Article  CAS  Google Scholar 

  40. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  41. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  42. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007)

    CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  44. Brünger, A. T. et al. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  45. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  46. McCoy, A., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  Google Scholar 

  47. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    Article  CAS  Google Scholar 

  48. Schuck, P. Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000)

    Article  ADS  CAS  Google Scholar 

  49. García de la Torre, J., Huertas, M. L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730 (2000)

    Article  Google Scholar 

  50. Svergun, D. I., Barberato, C. & Koch, M. CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995)

    Article  CAS  Google Scholar 

  51. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Eygensteyn is acknowledged for ICP-MS analysis. We thank H. Harhangi for advice on cloning, S. Zimmermann for assistance with cloning, A. Meinhart for discussions and support for cloning and crystallography, and D. Ringe and J. Reinstein for discussions. We thank the Dortmund-Heidelberg data collection team, especially W. Blankenfeldt, and the staff of beam lines X10SA and X12SA at the Swiss Light Source of the PSI in Villigen for their help and facilities. We also thank A. Rufer for help with the analytical ultracentrifuge and I. Vetter for support with the crystallographic software. The work was funded by an STW grant (STW_6353) to M.J.S. and M.H.Z. and by the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

The research was conceived by A.P., M.S.M.J. and H.J.M.O. M.H.Z. performed the sampling, enrichment and isolation. M.J.S., M.H.Z. and A.P. performed the physiological experiments. M.J.S., J.H., A.F.K., L.P.V. and H.J.C.T.W. performed the purification and protein and gene sequencing. A.F.K. and H.J.M.O. performed the MALDI-TOF MS. H.J.M.O. and M.J.S. performed the alignments and phylogenetic analyses. M.J.S. and L.R. performed the site-directed mutant studies, including the activity measurements. A.S. and T.R.M.B. grew the crystals; T.R.M.B. determined the crystal structures and suggested the amino acid residues to be mutated; I.S., A.U. and A.M. performed the SAXS experiments and analyses; and R.L.S. performed the analytical ultracentrifugation experiments. M.J.S., T.R.M.B., I.S., M.S.M.J. and H.J.M.O. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mike S. M. Jetten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3, a Supplementary Legend for Figure 1 and Supplementary Figures 1-9 with legends. (PDF 3457 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeulders, M., Barends, T., Pol, A. et al. Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature 478, 412–416 (2011). https://doi.org/10.1038/nature10464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10464

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology