Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond

Abstract

During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress1. Many foundational experiments have been performed2,3,4,5,6,7,8, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention9,10,11,12 since the first demonstration of macroscopic quantum coherence in Josephson junction circuits2. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 107 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up of a NV diamond sample attached to a flux qubit system.
Figure 2: Photoluminescence spectra.
Figure 3: Energy spectrum of the flux qubit coupled to a NV ensemble.
Figure 4: Vacuum Rabi oscillations of the flux qubit/NV ensemble coupled system.

References

  1. 1

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Nakamura, Y., Pashkin & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)

    ADS  Article  Google Scholar 

  6. 6

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Sørensen, A. S. van der Wal, C. H., Childress, L. I. & Lukin, M. D. Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)

    ADS  Article  Google Scholar 

  10. 10

    Tian, L., Rabl, P., Blatt, R. & Zoller, P. Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Rabl, P. et al. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Marcos, D. et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Chiorescu, I., Groll, N., Bertaina, S., Mori, T. & Miyashita, S. Magnetic strong coupling in a spin-photon system and transition to classical regime. Phys. Rev. B 82, 024413 (2010)

    ADS  Article  Google Scholar 

  15. 15

    Wu, H. et al. Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)

    ADS  Article  Google Scholar 

  16. 16

    Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011)

    ADS  Article  Google Scholar 

  19. 19

    Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J. & Carmichael, H. J. Normal-mode splitting and linewidth averaging for two-state atom in an optical cavity. Phys. Rev. Lett. 63, 240–243 (1989)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Naydenov, B. et al. Enhanced generation of single optically active spins in diamond by ion implantation. Appl. Phys. Lett. 96, 163108 (2010)

    ADS  Article  Google Scholar 

  21. 21

    Neumann, P. et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. N. J. Phys. 11, 013017 (2009)

    Article  Google Scholar 

  22. 22

    Zhu, X., Kemp, A., Saito, S. & Semba, K. Coherent operation of a gap-tunable flux qubit. Appl. Phys. Lett. 97, 102503 (2010)

    ADS  Article  Google Scholar 

  23. 23

    Fedorov, A. et al. Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Phys. Rev. Lett. 105, 060503 (2010)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Mizuochi, N. et al. Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201(R) (2009)

    ADS  Article  Google Scholar 

  28. 28

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Gruber, A. et al. Scanning confocal optical microscopy magnetic resonance on single defect centers. Science 276, 2012–2014 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Kurtsiefer, Zarda, P., Mayer, S. & Weinfurter, H. A stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Tawara, H. Gotoh and T. Sogawa for optical measurements at an early stage of this work. We also thank H. Tanji, Y. Matsuzaki, S. J. Devitt, J. Schmiedmayer and J. E. Mooij for discussions. This work was supported in part by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Scientific Research of Specially Promoted Research (grant no. 18001002) by MEXT, a Grant-in-Aid for Scientific Research on Innovative Areas (grant no.22102502), and Scientific Research (A) grant no. 22241025 from the Japanese Society for the Promotion of Science (JSPS). M.S.E. was supported by a JSPS fellowship.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. X.Z. and A.K. carried out measurements and data analysis on the coupled flux qubit/NV ensemble. N.M., M.K. and K.S. prepared and characterized the NV diamond crystals. X.Z., S.K., S.S. and A.K. designed and fabricated the flux qubit and associated devices. S.S., K.K. and A.K. designed and developed the flux qubit measurement system. W.J.M., A.K., Y.T., H.N., M.S.E. and K.N. provided theoretical support and analysis. X.Z., M.S.E., W.J.M. and K.S. wrote the manuscript, with feedback from all authors. W.J.M. and K.S. designed and supervised the project.

Corresponding author

Correspondence to Kouichi Semba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-5, Supplementary Figures 1-3 with legends and additional references. (PDF 360 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, X., Saito, S., Kemp, A. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011). https://doi.org/10.1038/nature10462

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing