Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors

Abstract

Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets1,2,3. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons4. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on Gαq activity, but not on the subsequent steps of the phototransduction cascade5. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rh6 acts to repress Rh5 expression in yR8 photoreceptors.
Figure 2: Rh6 represses transcription of the rh5 gene.
Figure 3: Mutation of rh6 does not lead to change in yR8 cell identity.
Figure 4: Part of the phototransduction pathway is required to maintain repression of Rh5.

Similar content being viewed by others

References

  1. Mombaerts, P. Axonal wiring in the mouse olfactory system. Annu. Rev. Cell Dev. Biol. 22, 713–737 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Komiyama, T. & Luo, L. Development of wiring specificity in the olfactory system. Curr. Opin. Neurobiol. 16, 67–73 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Morey, M. et al. Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons. Nature 456, 795–799 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  4. Rister, J. & Desplan, C. The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 10.1002/dneu.20905 (2011)

  5. Wang, T. & Montell, C. Phototransduction and retinal degeneration in Drosophila . Pflügers Arch. 454, 821–847 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Franceschini, N., Kirschfeld, K. & Minke, B. Fluorescence of photoreceptor cells observed in vivo . Science 213, 1264–1267 (1981)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Mazzoni, E. O. et al. Iroquois complex genes induce co-expression of rhodopsins in Drosophila . PLoS Biol. 6, e97 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mikeladze-Dvali, T. et al. The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122, 775–787 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Wernet, M. F. et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440, 174–180 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Serizawa, S. et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Shykind, B. M. et al. Gene switching and the stability of odorant receptor gene choice. Cell 117, 801–815 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Lewcock, J. W. & Reed, R. R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl Acad. Sci. USA 101, 1069–1074 (2004)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A. & Mombaerts, P. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117, 833–846 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Fuss, S. H. & Ray, A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol. Cell. Neurosci. 41, 101–112 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Cook, T., Pichaud, F., Sonneville, R., Papatsenko, D. & Desplan, C. Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila . Dev. Cell 4, 853–864 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Harris, W. A., Stark, W. S. & Walker, J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster . J. Physiol. (Lond.) 256, 415–439 (1976)

    Article  CAS  Google Scholar 

  17. Chou, W. H. et al. Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. Development 126, 607–616 (1999)

    CAS  PubMed  Google Scholar 

  18. Papatsenko, D., Sheng, G. & Desplan, C. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. Development 124, 1665–1673 (1997)

    CAS  PubMed  Google Scholar 

  19. Chou, W. H. et al. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 17, 1101–1115 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. Tahayato, A. et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev. Cell 5, 391–402 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Green, P., Hartenstein, A. Y. & Hartenstein, V. The embryonic development of the Drosophila visual system. Cell Tissue Res. 273, 583–598 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Sprecher, S. G., Pichaud, F. & Desplan, C. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev. 21, 2182–2195 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sprecher, S. G. & Desplan, C. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 454, 533–537 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  24. Hofbauer, A. & Buchner, E. Does Drosophila have seven eyes? Naturwissenschaften 76, 335–336 (1989)

    Article  ADS  Google Scholar 

  25. Yasuyama, K. & Meinertzhagen, I. A. Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster . J. Comp. Neurol. 412, 193–202 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Huang, J. et al. Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr. Biol. 20, 189–197 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. O’Tousa, J. E., Leonard, D. S. & Pak, W. L. Morphological defects in oraJK84 photoreceptors caused by mutation in R1–6 opsin gene of Drosophila . J. Neurogenet. 6, 41–52 (1989)

    Article  PubMed  Google Scholar 

  28. Kumar, J. P. & Ready, D. F. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121, 4359–4370 (1995)

    CAS  PubMed  Google Scholar 

  29. Shen, W. L. et al. Function of rhodopsin in temperature discrimination in Drosophila . Science 331, 1333–1336 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Arikawa, K., Mizuno, S., Kinoshita, M. & Stavenga, D. G. Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus . J. Neurosci. 23, 4527–4532 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Earl, J. B. & Britt, S. G. Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment. Gene Expr. Patterns 6, 687–694 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Oberstein, A., Pare, A., Kaplan, L. & Small, S. Site-specific transgenesis by Cre-mediated recombination in Drosophila . Nature Methods 2, 583–585 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila . Nature 448, 151–156 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Till, B. J. et al. High-throughput TILLING for functional genomics. Methods Mol. Biol. 236, 205–220 (2003)

    CAS  PubMed  Google Scholar 

  36. Lai, S. L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila . Nature Neurosci. 9, 703–709 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Stapleton, M. et al. The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. Genome Res. 12, 1294–1300 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  39. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. Gq alpha protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919–927 (1995)

    Article  CAS  PubMed  Google Scholar 

  41. Bloomquist, B. T. et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54, 723–733 (1988)

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in Drosophila . Proc. Natl Acad. Sci. USA 105, 4910–4915 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  43. Gerresheim, F. Isolation of Drosophila melanogaster mutants with a wavelength-specific alteration in their phototactic response. Behav. Genet. 18, 227–246 (1988)

    Article  CAS  PubMed  Google Scholar 

  44. Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K. & Zuker, C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651–659 (1996)

    Article  CAS  PubMed  Google Scholar 

  45. Papatsenko, D., Nazina, A. & Desplan, C. A conserved regulatory element present in all Drosophila rhodopsin genes mediates Pax6 functions and participates in the fine-tuning of cell-specific expression. Mech. Dev. 101, 143–153 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995)

    Article  CAS  PubMed  Google Scholar 

  47. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995)

    CAS  PubMed  Google Scholar 

  48. O’Keefe, L. V. et al. Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum. Mol. Genet. 20, 497–509 (2011)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Blau, B. Collins, M. Cols, T. Erclik, S.H. Fuss, D. Jukam, J.P. Kumar, E. Laufer, H.-S. Li, B. Minke, C. Montell, F. Pichaud, J. Rister and A. Tomlinson for suggestions and comments on the manuscript, V. Douard for help with qRT–PCR, J. Goodness for help identifying rh6fs allele, S.G. Britt, P.J. Dolph, P.R. Hiesinger, F. Pichaud, N. Pinal, D.F. Ready, C.S. Zuker, and the Bloomington Drosophila Stock Center for flies or antibodies. This work was funded by the National Institutes of Health R01EY13012 to C.D. and F32EY016309 to D.V.

Author information

Authors and Affiliations

Authors

Contributions

D.V., E.O.M. and C.D. conceived the experiments; D.V. and E.O.M. designed and performed experiments in adult flies; S.G.S. designed and performed experiments in larvae; K.B. performed RNAi experiments; R.J.J., P.L., N.V. and A.C. contributed reagents; D.V. and C.D. wrote the paper.

Corresponding author

Correspondence to Claude Desplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-9 with legends and Supplementary Tables 1-3. (PDF 7386 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliauskas, D., Mazzoni, E., Sprecher, S. et al. Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors. Nature 479, 108–112 (2011). https://doi.org/10.1038/nature10451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10451

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing