Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-fidelity projective read-out of a solid-state spin quantum register

Abstract

Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms1,2. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation1. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits3,4,5,6. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen–vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state7. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin5,8. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell’s inequalities on solid-state spins and the implementation of measurement-based quantum information protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resonant excitation and electronic spin preparation of a nitrogen–vacancy centre.
Figure 2: Projective single-shot read-out of the NV’s electronic spin.
Figure 3: Nuclear spin preparation and read-out.
Figure 4: Initialization, manipulation and read-out of a two-qubit register.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  2. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  3. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Giedke, G., Taylor, J. M., D’Alessandro, D., Lukin, M. D. & Imamoğlu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006)

    Article  ADS  Google Scholar 

  8. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201(R) (2011)

    Article  ADS  Google Scholar 

  11. de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Batalov, A. et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett. 100, 077401 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010)

    Article  ADS  Google Scholar 

  17. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310(R) (2005)

    Article  ADS  Google Scholar 

  19. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007)

    Article  ADS  Google Scholar 

  20. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Article  Google Scholar 

  21. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Happer, W. Optical pumping. Rev. Mod. Phys. 44, 169–249 (1972)

    Article  ADS  CAS  Google Scholar 

  25. Blatt, R. & Zoller, P. Quantum jumps in atomic systems. Eur. J. Phys. 9, 250–256 (1988)

    Article  CAS  Google Scholar 

  26. Tamarat, P. et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008)

    Article  Google Scholar 

  27. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)

    Article  ADS  Google Scholar 

  28. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  29. Fu, K.-M. C. et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009)

    Article  ADS  Google Scholar 

  30. Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010)

    Article  ADS  Google Scholar 

  31. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008)

    Article  ADS  Google Scholar 

  32. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

L.R. acknowledges support by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme. L.R., H.B., B.H. and R.H. acknowledge support from the Dutch Organization for Fundamental Research on Matter (FOM) and the European Commission (SOLID). L.C. acknowledges support from Research Corporation for Science Advancement (RCSA).

Author information

Authors and Affiliations

Authors

Contributions

L.R., L.C. and H.B. conducted the experiments. L.R., L.C., H.B., B.H. and R.H. analysed the data. H.B. and P.F.A.A. fabricated the devices. L.R., L.C. and R.H wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Ronald Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figures 1-9 with legends and additional references. (PDF 463 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robledo, L., Childress, L., Bernien, H. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011). https://doi.org/10.1038/nature10401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10401

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing