The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment


Many precious, ‘iron-loving’ metals, such as gold, are surprisingly abundant in the accessible parts of the Earth, given the efficiency with which core formation should have removed them to the planet’s deep interior1. One explanation of their over-abundance is a ‘late veneer’—a flux of meteorites added to the Earth after core formation as a ‘terminal’ bombardment that culminated in the cratering of the Moon2. Some 3.8 billion-year-old rocks from Isua, Greenland, are derived from sources that retain an isotopic memory of events pre-dating this cataclysmic meteorite shower3,4. These Isua samples thus provide a window on the composition of the Earth before such a late veneer and allow a direct test of its importance in modifying the composition of the planet. Using high-precision (less than 6 parts per million, 2 standard deviations) tungsten isotope analyses of these rocks, here we show that they have a isotopic tungsten ratio 182W/184W that is significantly higher (about 13 parts per million) than modern terrestrial samples. This finding is in good agreement with the expected influence of a late veneer. We also show that alternative interpretations, such as partial remixing of a deep-mantle reservoir formed in the Hadean eon5,6 (more than four billion years ago) or core–mantle interaction7, do not explain the W isotope data well. The decrease in mantle 182W/184W occurs during the Archean eon (about four to three billion years ago), potentially on the same timescale as a notable decrease in 142Nd/144Nd (refs 3 and 6). We speculate that both observations can be explained if late meteorite bombardment triggered the onset of the current style of mantle convection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ε 182 W measurements of Isua and post-Archean samples.
Figure 2: Model estimates of ε 182 W in modern mantle.


  1. 1

    Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts—implications for abundance of siderophile elements on Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Chou, C.-L. Fractionation of siderophile elements in the Earth’s upper mantle and lunar samples. Proc. 9th Lunar Planet. Sci. Conf. 9, 163–165 (1978)

    ADS  Google Scholar 

  3. 3

    Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. J. Inheritance of early Archean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol. 145, 25–46 (2003)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Carlson, R. W. & Boyet, M. Composition of the Earth’s interior: the importance of early events. Phil. Trans. R. Soc. Lond. A 366, 4077–4103 (2008)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Brandon, A. D. & Walker, R. J. The debate over core-mantle interaction. Earth Planet. Sci. Lett. 232, 211–225 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Rudge, J. F., Kleine, T. & Bourdon, B. Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nature Geosci. 3, 439–443 (2010)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal Lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon and Mars. Science 330, 1527–1530 (2010)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009)

    CAS  Article  Google Scholar 

  12. 12

    Brenan, J. M. & McDonough, W. F. Core formation and metal-silicate fractionation of osmium and iridium from gold. Nature Geosci. 2, 798–801 (2009)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Lorand, J. P., Alard, O. & Luguet, A. Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenées, France). Earth Planet. Sci. Lett. 289, 298–310 (2010)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Moorbath, S., O'Nions, K. & Pankhurst, R. J. The evolution of early Precambrian crustal rocks at Isua, West Greenland—geochemical and isotopic evidence. Earth Planet. Sci. Lett. 27, 229–239 (1975)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Iizuka, T. et al. The tungsten isotopic composition of Eoarchean rocks: implications for early silicate differentiation and core-mantle interaction on Earth. Earth Planet. Sci. Lett. 291, 189–200 (2010)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Moynier, F. et al. Coupled 182W-142Nd constraint for early Earth differentiation. Proc. Natl Acad. Sci. USA 107, 10810–10814 (2010)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Kleine, T. et al. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Morgan, J. W., Walker, R. J., Brandon, A. D. & Horan, M. F. Siderophile elements in Earth’s upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteorit. Planet. Sci. 36, 1257–1275 (2001)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Schoenberg, R., Kamber, B. S., Collerson, K. D. & Moorbath, S. Tungsten isotope evidence from 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–405 (2002)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Trinquier, A., Birck, J. L. & Allègre, C. J. High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry. J. Anal. At. Spectrom. 23, 1565–1574 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Frei, R. & Rosing, M. T. Search for traces of the late heavy bombardment on Earth—results from high precision chromium isotopes. Earth Planet. Sci. Lett. 236, 28–40 (2005)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Moynier, F., Koeberl, C., Quitté, G. & Telouk, P. A tungsten isotope approach to search for meteoritic components. Earth Planet. Sci. Lett. 286, 35–40 (2009)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth's deep mantle. Nature 460, 620–623 (2009)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Scherstén, A., Elliott, T., Hawkesworth, C. & Norman, M. D. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature 427, 234–237 (2004)

  25. 25

    Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Boyet, M. & Carlson, R. W. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Arevalo, R. & McDonough, W. F. Tungsten geochemistry and implications for understanding the Earth’s interior. Earth Planet. Sci. Lett. 272, 656–665 (2008)

  29. 29

    Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Kleine, T. et al. Hf-W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth Planet. Sci. Lett. 270, 106–118 (2008)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Quitté, G., Birck, J.-L., Capmas, F. & Allègre, C. J. High-precision Hf-W isotopic measurements in meteoritic material using negative thermal ionisation mass spectrometry. Geostand. Newsl. 26, 149–160 (2002)

    Article  Google Scholar 

  32. 32

    Kleine, T., Mezger, K., Münker, C., Palme, H. & Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Sahoo, Y. V., Nakai, S. & Ali, A. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry. Analyst 131, 434–439 (2006)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Willbold, M., Hegner, E., Stracke, A. & Rocholl, A. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet. Sci. Lett. 279, 44–52 (2009)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Marcantonio, F., Zindler, A., Elliott, T. & Staudigel, H. Os isotope systematics of La Palma, Canary Islands: evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet. Sci. Lett. 133, 397–410 (1995)

    CAS  ADS  Article  Google Scholar 

Download references


We thank the IODP, C. Storey (University of Portsmouth) and M. D. Norman (ANU Canberra) for providing sample material. We thank C. Coath for assistance with mass spectrometric analyses and T. Kleine and F. Moynier for comments. We acknowledge funding from NERC (NE/DO12805/1, NE/H011927/1), STFC (ST/F002734/1), and DFG (WI 3579/1-1).

Author information




Samples from Isua were collected by S.M. Analytical development and sample analyses were carried out by M.W. Modelling and manuscript preparation was carried out by T.E. and M.W. All authors contributed to discussing the results and implications.

Corresponding author

Correspondence to Matthias Willbold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-4 with legends and Supplementary Tables 1-5 (see separate excel files for Supplementary Tables 6 and 7). (PDF 1270 kb)

Supplementary Table 6

This table shows the results of Monte-Carlo simulations using shallow mantle partition coefficients for hidden reservoir formation. (XLS 1042 kb)

Supplementary Table 7

This table shows the results of Monte-Carlo simulations using deep mantle partition coefficients for hidden reservoir formation. (XLS 1289 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.