Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistence of soil organic matter as an ecosystem property

Abstract

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular structure does not control long-term decomposition of soil organic matter (SOM).
Figure 2: In soil, the existence of humic substances has not been verified by direct measurements.
Figure 3: A synopsis of all eight insights, contrasting historical and emerging views of soil carbon cycling.

References

  1. 1

    Fischlin, A. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. ) 211–272 (Cambridge Univ. Press, 2007)

    Google Scholar 

  2. 2

    Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006)A systematic comparison of model predictions of soil carbon response to climate change.

    ADS  Google Scholar 

  3. 3

    von Lützow, M. & Kögel-Knabner, I. Temperature sensitivity of soil organic matter decomposition—what do we know? Biol. Fertil. Soils 46, 1–15 (2009)A review and outline of research needs about the response of soil organic matter to rising temperatures

    Google Scholar 

  4. 4

    Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition — still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006)

    CAS  Google Scholar 

  5. 5

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008)

    CAS  PubMed  ADS  Google Scholar 

  6. 6

    Trumbore, S. E. & Czimczik, C. I. An uncertain future for soil carbon. Science 321, 1455–1456 (2008)

    CAS  PubMed  Google Scholar 

  7. 7

    Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996)Described mechanisms of SOM stabilization involving environmental controls.

    ADS  Google Scholar 

  8. 8

    Hedges, J. I. et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000)Formulated the fundamental question of why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years?

    CAS  Google Scholar 

  9. 9

    Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and sediments. Org. Geochem. 27, 319–361 (1997)

    CAS  Google Scholar 

  10. 10

    Totsche, K. U. et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88–99 (2010)

    CAS  Google Scholar 

  11. 11

    Oades, J. M. The retention of organic matter in soils. Biogeochemistry 5, 35–70 (1988)

    CAS  Google Scholar 

  12. 12

    Marschner, B. et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91–110 (2008)

    CAS  Google Scholar 

  13. 13

    Kleber, M. & Johnson, M. G. Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv. Agron. 106, 77–142 (2010)

    CAS  Google Scholar 

  14. 14

    Melillo, J. M., Aber, J. D. & Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626 (1982)

    CAS  Google Scholar 

  15. 15

    Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. Combining biomarker with stable isotope analysis for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100, 155–250 (2008)A review including a compilation of the surprisingly rapid and overlapping turnover times of individual molecular compounds previously suspected to have ‘slow’ turnover.

    CAS  Google Scholar 

  16. 16

    Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257 (2005)

    Google Scholar 

  17. 17

    Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297–307 (2008)

    CAS  PubMed  ADS  Google Scholar 

  18. 18

    Ekschmitt, K. et al. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci. 171, 27–35 (2008)

    CAS  Google Scholar 

  19. 19

    Stevenson, F. J. Humus Chemistry (Wiley, 1994)

    Google Scholar 

  20. 20

    Olk, D. C. & Gregorich, E. G. Overview of the symposium proceedings, “Meaningful pools in determining soil carbon and nitrogen dynamics”. Soil Sci. Soc. Am. J. 70, 967–974 (2006)

    CAS  ADS  Google Scholar 

  21. 21

    von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions — a review. Eur. J. Soil Sci. 57, 426–445 (2006)

    Google Scholar 

  22. 22

    Lehmann, J. et al. Spatial complexity of soil organic matter forms at nanometre scales. Nature Geosci. 1, 238–242 (2008)

    CAS  ADS  Google Scholar 

  23. 23

    Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009–9015 (2005)

    CAS  PubMed  ADS  Google Scholar 

  24. 24

    Haumaier, L. & Zech, W. Black carbon — possible source of highly aromatic components of soil humic acids. Org. Geochem. 23, 191–196 (1995)

    CAS  Google Scholar 

  25. 25

    Trompowsky, P. M. et al. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org. Geochem. 36, 1480–1489 (2005)

    CAS  Google Scholar 

  26. 26

    Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420 (2006)A summary of the current understanding of the formation, properties and fate of fire-residues in natural ecosystems.

    CAS  ADS  Google Scholar 

  27. 27

    Schmidt, M. W. I. & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–794 (2000)

    CAS  ADS  Google Scholar 

  28. 28

    Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G. & Weiner, S. Modern and fossil charcoal: aspects of structure and diagenesis. J. Archaeol. Sci. 33, 428–439 (2006)

    Google Scholar 

  29. 29

    Hammes, K., Torn, M. S., Lapenas, A. G. & Schmidt, M. W. I. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5, 1339–1350 (2008)

    CAS  ADS  Google Scholar 

  30. 30

    Major, J., Lehmann, J., Rondon, M. & Goodale, C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16, 1366–1379 (2010)

    ADS  Google Scholar 

  31. 31

    Kim, S., Kaplan, L. A., Benner, R. & Hatcher, P. G. Hydrogen-deficient molecules in natural riverine water samples — evidence for the existence of black carbon in DOM. Mar. Chem. 92, 225–234 (2004)

    CAS  Google Scholar 

  32. 32

    Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nature Geosci. 2, 175–179 (2009)

    CAS  ADS  Google Scholar 

  33. 33

    Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37, L16601 (2010)

    ADS  Google Scholar 

  34. 34

    Nguyen, B. T., Lehmann, J., Hockaday, W. C., Joseph, S. & Masiello, C. A. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331 (2010)

    CAS  PubMed  ADS  Google Scholar 

  35. 35

    Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)

    CAS  PubMed  ADS  Google Scholar 

  36. 36

    Liang, B. et al. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 72, 6069–6078 (2008)

    CAS  ADS  Google Scholar 

  37. 37

    Cheng, C. H. & Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021–1027 (2009)

    CAS  PubMed  ADS  Google Scholar 

  38. 38

    Lehmann, J. et al. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geosci. 1, 832–835 (2008)

    CAS  ADS  Google Scholar 

  39. 39

    Brodowski, S., John, B., Flessa, H. & Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 57, 539–546 (2006)

    Google Scholar 

  40. 40

    Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005)

    CAS  Google Scholar 

  41. 41

    Kong, A. Y. Y. & Six, J. Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J. 74, 1201–1210 (2010)

    CAS  ADS  Google Scholar 

  42. 42

    Balesdent, J. & Balabane, M. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28, 1261–1263 (1996)

    CAS  Google Scholar 

  43. 43

    Mendez-Millan, M., Dignac, M. F., Rumpel, C., Rasse, D. P. & Derenne, S. Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biol. Biochem. 42, 169–177 (2010)

    CAS  Google Scholar 

  44. 44

    Kramer, C. et al. Recent (4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 42, 1028–1037 (2010)

    CAS  Google Scholar 

  45. 45

    Bird, J. A., Kleber, M. & Torn, M. S. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org. Geochem. 39, 465–477 (2008)

    CAS  Google Scholar 

  46. 46

    Bird, J. A. & Torn, M. S. Fine roots vs. needles: A comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79, 361–382 (2006)

    Google Scholar 

  47. 47

    Godbold, D. L. et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281, 15–24 (2006)

    CAS  Google Scholar 

  48. 48

    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007)

    CAS  PubMed  ADS  Google Scholar 

  49. 49

    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010)

    CAS  Google Scholar 

  50. 50

    Ågren, G. I., Bosatta, E. & Magill, A. H. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128, 94–98 (2001)

    PubMed  ADS  Google Scholar 

  51. 51

    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci. 3, 315–322 (2010)

    CAS  ADS  Google Scholar 

  52. 52

    Chabbi, A., Kogel-Knabner, I. & Rumpel, C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol. Biochem. 41, 256–261 (2009)

    CAS  Google Scholar 

  53. 53

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000)

    Google Scholar 

  54. 54

    Trumbore, S. E., Davidson, E. A., de Camargo, P. B., Nepstad, D. C. & Martinelli, L. A. Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Glob. Biogeochem. Cycles 9, 515–528 (1995)

    CAS  ADS  Google Scholar 

  55. 55

    Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter — a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 (2011)A comprehensive overview of key challenges to quantitative understanding of deep soil carbon.

    CAS  Google Scholar 

  56. 56

    Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37, 1319–1331 (2005)

    CAS  Google Scholar 

  57. 57

    Torn, M. S. et al. Organic carbon and carbon isotopes in modern and 100-year-old soil archives of the Russian steppe. Glob. Change Biol. 8, 941–953 (2002)

    ADS  Google Scholar 

  58. 58

    Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003)

    ADS  Google Scholar 

  59. 59

    Kramer, C. & Gleixner, G. Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40, 425–433 (2008)

    CAS  Google Scholar 

  60. 60

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23 GB2023 10.1029/2008GB003327 (2009)

    CAS  Article  ADS  Google Scholar 

  61. 61

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009)

    CAS  PubMed  ADS  Google Scholar 

  62. 62

    Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008)

    Google Scholar 

  63. 63

    Nowinski, N. S., Taneva, L., Trumbore, S. E. & Welker, J. M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163, 785–792 (2010)

    PubMed  PubMed Central  ADS  Google Scholar 

  64. 64

    Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004)

    CAS  PubMed  ADS  Google Scholar 

  65. 65

    Nowinski, N. S., Trumbore, S. E., Schuur, E. A. G., Mack, M. C. & Shaver, G. R. Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11, 16–25 (2008)

    CAS  Google Scholar 

  66. 66

    Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32 L21413 10.1029/2005GL024413 (2005)

    Article  ADS  Google Scholar 

  67. 67

    Kawahigashi, M., Kaiser, K., Rodionov, A. & Guggenberger, G. Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra. Glob. Change Biol. 12, 1868–1877 (2006)

    ADS  Google Scholar 

  68. 68

    Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008)

    CAS  Google Scholar 

  69. 69

    Morales, S. E. & Holben, W. E. Linking bacterial identities and ecosystem processes: can 'omic' analyses be more than the sum of their parts? FEMS Microbiol. Ecol. 75, 2–16 (2011)

    CAS  PubMed  Google Scholar 

  70. 70

    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002)

    Google Scholar 

  71. 71

    McGuire, K. L. & Treseder, K. K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol. Biochem. 42, 529–535 (2010)

    CAS  Google Scholar 

  72. 72

    von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007)

    CAS  PubMed  ADS  Google Scholar 

  73. 73

    Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 7, 320–332 (2010)

    CAS  Google Scholar 

  74. 74

    Manzoni, S. & Porporato, A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41, 1355–1379 (2009)

    CAS  Google Scholar 

  75. 75

    Kucharik, C. J. et al. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: potential for SOC sequestration during the next 50 years. Ecosystems 4, 237–258 (2001)

    CAS  Google Scholar 

  76. 76

    Jenkinson, D. S. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. 329, 361–368 (1990)

    CAS  Google Scholar 

  77. 77

    Parton, W. J., Ojima, D. S., Cole, C. V. & Schimel, D. S. in Quantitative Modeling of Soil Forming Processes (eds Bryant, R. B. & Arnold, R. W. ) 147–167 (Special Publication, Soil Science Society of America, 1994)

    Google Scholar 

  78. 78

    Thornton, P. E. & Rosenbloom, N. A. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Model. 189, 25–48 (2005)

    CAS  Google Scholar 

  79. 79

    Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. & Zimov, S. A. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B 60, 250–264 (2008)

    ADS  Google Scholar 

  80. 80

    Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)

    Google Scholar 

  81. 81

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006)

    CAS  PubMed  ADS  Google Scholar 

  82. 82

    Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005)

    CAS  PubMed  ADS  Google Scholar 

  83. 83

    Kirschbaum, M. U. F. The temperature dependence of organic matter decomposition: seasonal temperature variations turn a sharp short-term temperature response into a more moderate annually averaged response. Glob. Change Biol. 16, 2117–2129 (2010)

    ADS  Google Scholar 

  84. 84

    Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433, 57–59 (2005)

    CAS  PubMed  ADS  Google Scholar 

  85. 85

    Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geosci. 3, 854–857 (2010)

    CAS  ADS  Google Scholar 

  86. 86

    Lorenz, K., Lal, R., Preston, C. M. & Nierop, K. G. J. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142, 1–10 (2007)

    CAS  ADS  Google Scholar 

  87. 87

    Thevenot, M., Dignac, M. F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010)

    CAS  Google Scholar 

  88. 88

    Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007)

    CAS  PubMed  ADS  Google Scholar 

  89. 89

    Sachs, J. et al. Monitoring the world's agriculture. Nature 466, 558–560 (2010)

    CAS  PubMed  ADS  Google Scholar 

  90. 90

    Richter, D. D., Hofmockel, M., Callaham, M. A., Powlson, D. S. & Smith, P. Long-term soil experiments: keys to managing Earth's rapidly changing ecosystems. Soil Sci. Soc. Am. J. 71, 266–279 (2007)

    CAS  ADS  Google Scholar 

  91. 91

    Amundson, R. & Jenny, H. The place of humans in the state factor theory of ecosystems and their soils. Soil Sci. 151, 99–109 (1991)

    ADS  Google Scholar 

  92. 92

    Amstalden van Hove, E. R., Smith, D. F. & Heeren, R. M. A. A concise review of mass spectrometry imaging. J. Chromatogr. A 1217, 3946–3954 (2010)

    CAS  PubMed  Google Scholar 

  93. 93

    Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry — a new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 39, 1835–1850 (2007)

    CAS  Google Scholar 

  94. 94

    Ranjard, L. et al. Biogeography of soil microbial communities: a review and a description of the ongoing French national initiative. Agron. Sustain. Dev. 30, 359–365 (2010)

    Google Scholar 

  95. 95

    Pascault, N. et al. In situ dynamics of microbial communities during decomposition of wheat, rape and alfalfa residues. Microb. Ecol. 60, 816–828 (2010)

    PubMed  Google Scholar 

  96. 96

    Xu, T. F. Incorporating aqueous reaction kinetics and biodegradation into TOUGHREACT: applying a multiregion model to hydrobiogeochemical transport of denitrification and sulfate reduction. Vadose Zone J. 7, 305–315 (2008)

    CAS  Google Scholar 

  97. 97

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Rev. Microbiol. 8, 593–599 (2010)

    CAS  Google Scholar 

  98. 98

    Sollins, P., Swanston, C. & Kramer, M. Stabilization and destabilization of soil organic matter — a new focus. Biogeochemistry 85, 1–7 (2007)

    Google Scholar 

  99. 99

    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997)

    CAS  ADS  Google Scholar 

  100. 100

    Kelleher, B. P. & Simpson, A. J. Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 40, 4605–4611 (2006)

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The European Science Foundation Network MOLTER sponsored the workshop at which the idea for this Perspective was conceived. Support for M.W.I.S. and M.S.T. was also provided by the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information

Affiliations

Authors

Contributions

M.W.I.S. coordinated the MOLTER-sponsored workshop mentioned above; the ideas were developed by all authors. M.W.I.S. and M.S.T. participated actively and equally in the writing of the manuscript and the drafting of the figures. All authors provided input into the drafting and the final version of the manuscript.

Corresponding authors

Correspondence to Michael W. I. Schmidt or Margaret S. Torn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, M., Torn, M., Abiven, S. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011). https://doi.org/10.1038/nature10386

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing