Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis, assembly and applications of semiconductor nanomembranes

Abstract

Research in electronic nanomaterials, historically dominated by studies of nanocrystals/fullerenes and nanowires/nanotubes, now incorporates a growing focus on sheets with nanoscale thicknesses, referred to as nanomembranes. Such materials have practical appeal because their two-dimensional geometries facilitate integration into devices, with realistic pathways to manufacturing. Recent advances in synthesis provide access to nanomembranes with extraordinary properties in a variety of configurations, some of which exploit quantum and other size-dependent effects. This progress, together with emerging methods for deterministic assembly, leads to compelling opportunities for research, from basic studies of two-dimensional physics to the development of applications of heterogeneous electronics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Unique physical properties in NMs.
Figure 2: Representative routes for synthesizing inorganic monocrystalline semiconductor NMs.
Figure 3: Inorganic monocrystalline semiconductor NMs in non-planar configurations.
Figure 4: NMs of conjugated carbon and their synthesis using interfacial methods.
Figure 5: Operation of elastomeric stamps for deterministic assembly of NMs, with examples of printed sparse arrays and multilayer assemblies.
Figure 6: NMs as active materials in unusual electronic and optoelectronic devices.

References

  1. Steigerwald, M. L. & Brus, L. E. Semiconductor crystallites — a class of large molecules. Acc. Chem. Res. 23, 183–188 (1990)

    CAS  Google Scholar 

  2. Hebard, A. F. Buckminsterfullerene. Annu. Rev. Mater. Sci. 23, 159–191 (1993)

    ADS  CAS  Google Scholar 

  3. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007)

    ADS  CAS  Google Scholar 

  4. Novoselov, K. S. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009)

    CAS  Google Scholar 

  6. Ma, R. & Sasaki, T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010)

    CAS  PubMed  Google Scholar 

  7. Hirsch, A. The era of carbon allotropes. Nature Mater. 9, 868–871 (2010)

    ADS  CAS  Google Scholar 

  8. Diederich, F. & Kivala, M. All-carbon scaffolds by rational design. Adv. Mater. 22, 803–812 (2010)

    CAS  PubMed  Google Scholar 

  9. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009)

    CAS  Google Scholar 

  10. Kim, S. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl Acad. Sci. USA 107, 17095–17100 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2005)Report on deterministic assembly of micro/nanoscale objects with elastomeric stamps.

    ADS  Google Scholar 

  12. Lee, K. J. et al. Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 17, 2332–2336 (2005)

    CAS  Google Scholar 

  13. Cavallo, F. & Lagally, M. G. Semiconductors turn soft: inorganic nanomembranes. Soft Matter 6, 439–455 (2010)

    ADS  CAS  Google Scholar 

  14. Huang, M. et al. Nanomechanical architecture of strained bilayer thin films: from design principles to experimental fabrication. Adv. Mater. 17, 2860–2864 (2005)

    CAS  Google Scholar 

  15. Li, X. L. Strain induced semiconductor nanotubes: from formation process to device applications. J. Phys. D Appl. Phys. 41, 193001 (2008)

    ADS  Google Scholar 

  16. Schmidt, O. G. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168–168 (2001)Report on rolled-up tubes from initially flat NMs.

    ADS  CAS  PubMed  Google Scholar 

  17. Ko, H. C. et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009)

    CAS  PubMed  Google Scholar 

  18. Sun, L. et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010)

    CAS  PubMed  Google Scholar 

  19. Ahn, J.-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006)

    ADS  CAS  PubMed  Google Scholar 

  20. Yuan, H.-C. et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009)

    ADS  Google Scholar 

  21. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010)Report on flexible NM electronics for mapping cardiac electrophysiology.

    PubMed  PubMed Central  Google Scholar 

  22. Symon, K. R. Mechanics 3rd edn (Addison-Wesley, 1971)

    MATH  Google Scholar 

  23. Kiefer, A. M. et al. Si/Ge junctions formed by nanomembrane bonding. ACS Nano 5, 1179–1189 (2011)

    CAS  PubMed  Google Scholar 

  24. Chen, F. et al. Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes. ACS Nano 4, 2466–2474 (2010)

    CAS  PubMed  Google Scholar 

  25. Zhang, P. et al. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006)Report on the influence of surfaces in controlling conduction in NMs.

    ADS  CAS  PubMed  Google Scholar 

  26. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnol. 5, 718–721 (2010)

    ADS  CAS  Google Scholar 

  27. Tang, J. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010)

    ADS  CAS  PubMed  Google Scholar 

  28. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005)

    ADS  CAS  PubMed  Google Scholar 

  29. Siriani, D. F. et al. Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays. IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009)

    ADS  CAS  Google Scholar 

  30. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    ADS  CAS  PubMed  Google Scholar 

  31. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnol. 6, 147–150 (2011)

    ADS  CAS  Google Scholar 

  32. Davis, G. D., Viljoen, P. E. & Lagally, M. G. Determination of shallow core level spectra in selected compound semiconductors. J. Electron Spectrosc. 20, 305–318 (1980)

    CAS  Google Scholar 

  33. Baca, A. J. et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17, 3051–3062 (2007)

    CAS  Google Scholar 

  34. Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z. T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006)

    ADS  Google Scholar 

  35. Ko, H. C., Baca, A. J. & Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 6, 2318–2324 (2006)

    ADS  CAS  PubMed  Google Scholar 

  36. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010)

    ADS  CAS  PubMed  Google Scholar 

  37. Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987)

    ADS  CAS  Google Scholar 

  38. Konagai, M., Sugimoto, M. & Takahashi, K. High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277–280 (1978)

    ADS  CAS  Google Scholar 

  39. Stern, F. & Woodall, J. M. Photon recycling in semiconductor lasers. J. Appl. Phys. 45, 3904–3906 (1974)

    ADS  CAS  Google Scholar 

  40. Park, S. I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009)

    ADS  CAS  PubMed  Google Scholar 

  41. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010)

    ADS  CAS  PubMed  Google Scholar 

  42. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)

    ADS  CAS  Google Scholar 

  43. Menard, E., Lee, K. J., Khang, D. Y., Nuzzo, R. G. & Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004)

    ADS  CAS  Google Scholar 

  44. Huang, M., Cavallo, F., Liu, F. & Lagally, M. G. Nanomechanical architecture of semiconductor nanomembranes. Nanoscale 3, 96–120 (2011)

    ADS  CAS  PubMed  Google Scholar 

  45. Rogers, J. A., Someya, T. & Huang, Y. G. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)Review of stretchable and curvilinear electronics based on shape-engineered NMs and other materials.

    ADS  CAS  PubMed  Google Scholar 

  46. Moutanabbir, O. & Gösele, U. Heterogeneous integration of compound semiconductors. Annu. Rev. Mater. Res. 40, 469–500 (2010)

    ADS  CAS  Google Scholar 

  47. Zhang, Y. et al. The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology 22, 045603 (2011)

    ADS  PubMed  Google Scholar 

  48. Kando, H. et al. in Microwave Conf. Proc. (APMC), 2010 Asia-Pacific 920–923 (IEEE, 2010)

    Google Scholar 

  49. Liu, Z., Wu, J., Duan, W., Lagally, M. & Liu, F. Electronic phase diagram of single-element silicon “strain” superlattices. Phys. Rev. Lett. 105, 016802 (2010)

    ADS  PubMed  Google Scholar 

  50. Euaruksakul, C. et al. Influence of strain on the conduction band structure of strained silicon nanomembranes. Phys. Rev. Lett. 101, 147403 (2008)

    ADS  CAS  PubMed  Google Scholar 

  51. Scott, S. A. & Lagally, M. G. Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys. J. Phys. D. 40, R75–R92 (2007)

    ADS  CAS  Google Scholar 

  52. Roberts, M. M. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nature Mater. 5, 388–393 (2006)Report on strain engineering in NMs, to achieve unique electronic properties.

    ADS  CAS  Google Scholar 

  53. Yuan, H.-C., Ma, Z., Roberts, M. M., Savage, D. E. & Lagally, M. G. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers. J. Appl. Phys. 100, 013708 (2006)

    ADS  Google Scholar 

  54. Huang, M. et al. Mechano-electronic superlattices in silicon nanoribbons. ACS Nano 3, 721–727 (2009)

    CAS  PubMed  Google Scholar 

  55. Paskiewicz, D. M., Tanto, B., Savage, D. E. & Lagally, M. G. Defect-free single-crystal SiGe: a new material from nanomembrane strain engineering. ACS Nano 5, 5814–5822 (2011)

    CAS  PubMed  Google Scholar 

  56. Paskiewicz, D. M., Scott, S. A., Savage, D. E., Celler, G. K. & Lagally, M. G. Symmetry in strain engineering of nanomembranes: making new strained materials. ACS Nano 5, 5532–5542 (2011)

    CAS  PubMed  Google Scholar 

  57. Sanchez-Perez, J. R. et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl Acad. Sci. USA (submitted)

  58. Huang, G. S., Mei, Y. F., Thurmer, D. J., Coric, E. & Schmidt, O. G. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab Chip 9, 263–268 (2009)

    CAS  PubMed  Google Scholar 

  59. Bernardi, A. et al. On-chip Si/SiO x microtube refractometer. Appl. Phys. Lett. 93, 094106 (2008)

    ADS  Google Scholar 

  60. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    ADS  CAS  PubMed  Google Scholar 

  61. Kim, D. H., Xiao, J. L., Song, J. Z., Huang, Y. G. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010)

    CAS  PubMed  Google Scholar 

  62. Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925)

    ADS  CAS  Google Scholar 

  63. Chun, I. S., Bassett, K., Challa, A. & Li, X. Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes. Appl. Phys. Lett. 96, 251106 (2010)

    ADS  Google Scholar 

  64. Prinz, V. & Golod, S. Elastic silicon-film-based nanoshells: formation, properties, and applications. J. Appl. Mech. Tech. Phys. 47, 867–878 (2006)

    ADS  CAS  Google Scholar 

  65. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    ADS  CAS  Google Scholar 

  66. Tahara, K., Yoshimura, T., Sonoda, M., Tobe, Y. & Williams, R. V. Theoretical studies on graphyne substructures: geometry, aromaticity, and electronic properties of the multiply fused dehydrobenzo[12]annulenes. J. Org. Chem. 72, 1437–1442 (2007)

    CAS  PubMed  Google Scholar 

  67. Haley, M. M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80, 519–532 (2008)

    CAS  Google Scholar 

  68. Long, M., Tang, L., Wang, D., Li, Y. & Shuai, Z. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5, 2593–2600 (2011)

    CAS  PubMed  Google Scholar 

  69. Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994)

    ADS  CAS  Google Scholar 

  70. Schultz, M. J. et al. Synthesis of linked carbon monolayers: films, balloons, tubes, and pleated sheets. Proc. Natl Acad. Sci. USA 105, 7353–7358 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng, Z. et al. Janus nanomembranes: a generic platform for chemistry in two dimensions. Angew. Chem. Int. Ed. 49, 8493–8497 (2010)

    CAS  Google Scholar 

  72. Geyer, W. et al. Electron-induced crosslinking of aromatic self-assembled monolayers: negative resists for nanolithography. Appl. Phys. Lett. 75, 2401–2403 (1999)

    ADS  CAS  Google Scholar 

  73. Turchanin, A. et al. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 21, 1233–1237 (2009)

    CAS  Google Scholar 

  74. Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)Report on substrate-templated synthetic routes to graphene-like nanoribbons and NMs.

    ADS  CAS  PubMed  Google Scholar 

  75. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008)

    CAS  PubMed  Google Scholar 

  76. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011)

    ADS  CAS  PubMed  Google Scholar 

  77. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    CAS  Google Scholar 

  78. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol. 3, 563–568 (2008)

    ADS  CAS  Google Scholar 

  79. Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    CAS  PubMed  Google Scholar 

  80. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    ADS  CAS  PubMed  Google Scholar 

  81. Xu, Y., Bai, H., Lu, G., Li, C. & Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)

    CAS  PubMed  Google Scholar 

  82. Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)

    ADS  CAS  PubMed  Google Scholar 

  83. Sasaki, D. Y., Carpick, R. W. & Burns, A. R. High molecular orientation in mono- and trilayer polydiacetylene films imaged by atomic force microscopy. J. Colloid Interf. Sci. 229, 490–496 (2000)

    ADS  CAS  Google Scholar 

  84. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003)

    ADS  CAS  Google Scholar 

  85. Knuesel, R. J. & Jacobs, H. O. Self-assembly of microscopic chiplets at a liquid-liquid-solid interface forming a flexible segmented monocrystalline solar cell. Proc. Natl Acad. Sci. USA 107, 993–998 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Menard, E., Nuzzo, R. G. & Rogers, J. A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 86, 093507 (2005)

    ADS  Google Scholar 

  87. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010)

    ADS  CAS  Google Scholar 

  88. Scott, S. A., Paskiewicz, D. M., Savage, D. E. & Lagally, M. G. Silicon nanomembranes incorporating mixed crystal orientations. ECS Trans. 16, 215–218 (2008)

    CAS  Google Scholar 

  89. Unarunotai, S. et al. Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano 4, 5591–5598 (2010)

    CAS  PubMed  Google Scholar 

  90. Unarunotai, S. et al. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett. 95, 202101 (2009)

    ADS  Google Scholar 

  91. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    ADS  CAS  PubMed  Google Scholar 

  92. Yuan, H.-C., Celler, G. K. & Ma, Z. 7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate. J. Appl. Phys. 102, 034501 (2007)

    ADS  Google Scholar 

  93. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater. 9, 929–937 (2010)

    ADS  CAS  Google Scholar 

  94. Lee, K. J. et al. Bendable GaN high electron mobility transistors on plastic substrates. J. Appl. Phys. 100, 124507 (2006)

    ADS  Google Scholar 

  95. Yuan, H.-C., Qin, G., Celler, G. K. & Ma, Z. Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates. Appl. Phys. Lett. 95, 043109 (2009)

    ADS  Google Scholar 

  96. Ko, H. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010)Report on transistors using NMs of InAs printed onto silicon substrates.

    ADS  CAS  PubMed  Google Scholar 

  97. Li, F. & Mi, Z. T. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers. Opt. Express 17, 19933–19939 (2009)

    ADS  CAS  PubMed  Google Scholar 

  98. Ji, H.-X. et al. Self-wound composite nanomembranes as electrode materials for lithium ion batteries. Adv. Mater. 22, 4591–4595 (2010)

    CAS  PubMed  Google Scholar 

  99. Kim, D. H. et al. Epidermal electronics. Science 333, 838 (2011)Report on NM electronics with mechanical properties matched to the epidermis, for skin-mounted devices.

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Du, A.-P. Le and S. Jo for assistance. The preparation of this manuscript was supported by a National Security Science and Engineering Faculty Fellowship and by AFOSR through a Multidisciplinary University Research Initiative grant (FA9550-08-1-0337). Work described in this Review that was performed by the authors was supported by the US DOE (DE-FG02-03ER46028, DE-FG02-07ER46471, DE-FG36-08GO18021 and DE-FG02-07ER46453), the US NSF/MRSEC programme (DMR-0520527), the US AFOSR (FA9550-08-1-0337) and the US NSF (DMI-0328162).

Author information

Authors and Affiliations

Authors

Contributions

J.A.R. led the preparation of the manuscript, wrote the sections ‘Single- and multilayer assembly’, ‘Applications in electronics and optoelectronics’ and ‘Conclusions and outlook’, and assembled the figures. M.G.L. and J.A.R. wrote the section ‘Inorganic nanomembranes’. R.G.N. and J.A.R. wrote the section ‘Organic nanomembranes’. All three authors contributed to the introduction and to editorial modifications of the overall text.

Corresponding author

Correspondence to J. A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogers, J., Lagally, M. & Nuzzo, R. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011). https://doi.org/10.1038/nature10381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10381

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing