Abstract
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries1,2. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing2,3,4. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti5,6. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control7,8,9. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines8. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens9,10,11 has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression12.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Calisher, C. H. Persistent emergence of dengue. Emerg. Infect. Dis. 11, 738–739 (2005)
Kyle, J. L. & Harris, E. Global spread and persistence of dengue. Annu. Rev. Microbiol. 62, 71–92 (2008)
Guzman, M. G. et al. Dengue: a continuing global threat. Nature Rev. Microbiol. 8, S7–S16 (2010)
Franco, C., Hynes, N. A., Bouri, N. & Henderson, D. A. The dengue threat to the United States. Biosecur. Bioterror. 8, 273–276 (2010)
Heintze, C., Garrido, M. V. & Kroeger, A. What do community-based dengue control programmes achieve? A systematic review of published evaluations. Trans. R. Soc. Trop. Med. Hyg. 101, 317–325 (2007)
Whitehead, S. S., Blaney, J. E., Durbin, A. P. & Murphy, B. R. Prospects for a dengue virus vaccine. Nature Rev. Microbiol. 5, 518–528 (2007)
Cook, P. E., McMeniman, C. J. & O’Neill, S. L. Modifying insect population age structure to control vector-borne disease. Adv. Exp. Med. Biol. 627, 126–140 (2008)
McMeniman, C. J. et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti . Science 323, 141–144 (2009)
Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium . Cell 139, 1268–1278 (2009)
Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008)
Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster . PLoS Biol. 6, e2 (2008)
Hoffmann, A. A. et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature doi:10.1038/nature10356 (this issue).
Hoffmann, A. A. & Turelli, M. in Influential Passengers: Inherited Microorganisms and Arthropod Reproduction (eds O’Neill, S. L., Hoffmann, A. A. & Werren, J. H. ) 42–80 (Oxford Univ. Press, 1997)
Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila . Nature 353, 440–442 (1991)
Turelli, M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution 64, 232–241 (2010)
Yeap, H. L. et al. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187, 583–595 (2011)
Riegler, M., Sidhu, M., Miller, W. J. & O’Neill, S. L. Evidence for a global Wolbachia replacement in Drosophila melanogaster . Curr. Biol. 15, 1428–1433 (2005)
McMeniman, C. J. & O’Neill, S. L. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl. Trop. Dis. 4, e748 (2010)
Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009)
Montgomery, B. L. & Ritchie, S. A. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am. J. Trop. Med. Hyg. 67, 244–246 (2002)
Telang, A. & Wells, M. A. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J. Insect Physiol. 50, 677–685 (2004)
Maciá, A. Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina. J. Vector Ecol. 31, 371–377 (2006)
Ritchie, S. A. et al. A secure semi-field system for the study of Aedes aegypti . PLoS Negl. Trop. Dis. 5, e988 (2011)
Hancock, P. A., Sinkins, S. P. & Godfray, C. J. Population dynamic models of the spread of Wolbachia . Am. Nat. 177, 323–333 (2011)
Harrington, L. C. et al. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J. Med. Entomol. 38, 537–547 (2001)
Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E. & Nisalak, A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 36, 143–152 (1987)
Salazar, M. I., Richardson, J. H., Sanchez-Vargas, I., Olson, K. E. & Beaty, B. J. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7, 9 (2007)
Bennett, K. E. et al. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am. J. Trop. Med. Hyg. 67, 85–92 (2002)
Gubler, D. J., Nalim, S., Tan, R., Saipan, H. & Sulianti Saroso, J. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti . Am. J. Trop. Med. Hyg. 28, 1045–1052 (1979)
Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti . PLoS Pathog. 6, e1000833 (2010)
Glaser, R. L. & Meola, M. A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5, e11977 (2010)
Dobson, S. L., Marsland, E. J., Veneti, Z., Bourtzis, K. & O’Neill, S. L. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68, 656–660 (2002)
McMeniman, C. J. et al. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl. Environ. Microbiol. 74, 6963–6969 (2008)
Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69 (2004)
Williams, C. R. et al. Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J. Med. Entomol. 45, 1173–1179 (2008)
Frentiu, F. D., Robinson, J., Young, P. R., McGraw, E. A. & O’Neill, S. L. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level. PLoS ONE 5, e13398 (2010)
Richardson, J., Molina-Cruz, A., Salazar, M. I. & Black, W. T. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti . Am. J. Trop. Med. Hyg. 74, 132–141 (2006)
Acknowledgements
We are grateful to N. Kenny for technical support and to members of the O’Neill laboratory for critical reading of the manuscript. We thank R. Silcock, M. Janes, S. Long, C. Paton and C. Omodei for their assistance in the semi-field cages and laboratory at James Cook University. We are very grateful for all of our volunteers who helped to blood-feed the mosquitoes in the cages and to P. Young for providing the anti-dengue antibodies. This research was supported by a grant from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative of the Bill and Melinda Gates Foundation, The National Health and Medical Research Council, Australia, the RAPIDD program of the NIH, the Climate and Health Cluster of the CSIRO Flagship collaboration Fund and fellowships from the Australian Research Council.
Author information
Authors and Affiliations
Contributions
T.W. performed transinfection and initial phenotypic characterization of the infection. P.H.J., Y.S.L., Y.D. and S.A.R. performed cage invasion experiments and fecundity assays on outbred mosquito lines. T.W., L.A.M. and F.D.F. carried out vector competence assays. I.I.-O. performed FISH. C.J.M. established cell lines for transinfection. J.A. and P.K. performed cytoplasmic incompatibility and lifespan assays on outbred mosquito lines. A.L.L. undertook modelling studies. T.W. and A.A.H. performed data analysis. T.W., P.H.J., S.L.O. and A.A.H. wrote the paper. S.L.O., A.A.H. and S.A.R. provided oversight of the design and direction of the work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains Supplementary Figures 1- 8 with legends, Supplementary Tables 1- 2, Supplementary Text and Data and additional references. (PDF 5104 kb)
Rights and permissions
About this article
Cite this article
Walker, T., Johnson, P., Moreira, L. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011). https://doi.org/10.1038/nature10355
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10355
This article is cited by
-
Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases
Parasites & Vectors (2023)
-
Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China
Parasites & Vectors (2023)
-
Differences in proteome perturbations caused by the Wolbachia strain wAu suggest multiple mechanisms of Wolbachia-mediated antiviral activity
Scientific Reports (2023)
-
Wolbachia protects Drosophila melanogaster against two naturally occurring and virulent viral pathogens
Scientific Reports (2023)
-
Genomic databanks provide robust assessment of invasive mosquito movement pathways and cryptic establishment
Biological Invasions (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.