Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of a minor and transiently formed state of a T4 lysozyme mutant

Abstract

Proteins are inherently plastic molecules, whose function often critically depends on excursions between different molecular conformations (conformers)1,2,3. However, a rigorous understanding of the relation between a protein’s structure, dynamics and function remains elusive. This is because many of the conformers on its energy landscape are only transiently formed and marginally populated (less than a few per cent of the total number of molecules), so that they cannot be individually characterized by most biophysical tools. Here we study a lysozyme mutant from phage T4 that binds hydrophobic molecules4 and populates an excited state transiently (about 1 ms) to about 3% at 25 °C (ref. 5). We show that such binding occurs only via the ground state, and present the atomic-level model of the ‘invisible’, excited state obtained using a combined strategy of relaxation-dispersion NMR (ref. 6) and CS-Rosetta7 model building that rationalizes this observation. The model was tested using structure-based design calculations identifying point mutants predicted to stabilize the excited state relative to the ground state. In this way a pair of mutations were introduced, inverting the relative populations of the ground and excited states and altering function. Our results suggest a mechanism for the evolution of a protein’s function by changing the delicate balance between the states on its energy landscape. More generally, they show that our approach can generate and validate models of excited protein states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L99A T4L exchanges between ground (visible) and excited (invisible) states, each with distinct conformations.
Figure 2: The structure of the invisible, excited state of L99A T4L.
Figure 3: Hydrophobic ligands do not bind the excited state of L99A T4L.
Figure 4: The delicate balance between states on the energy landscape can be readily manipulated through mutation, providing a path for protein evolvability.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structural ensembles of the L99A excited state and L99A,G113A,R119P T4L have been deposited with PDB (accession codes 2LCB, 2LC9).

References

  1. Karplus, M. & Kuriyan, J. Molecular dynamics and protein function. Proc. Natl Acad. Sci. USA 102, 6679–6685 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Henzler-Wildman, K. A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Eriksson, A. E., Baase, W. A., Wozniak, J. A. & Matthews, B. W. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355, 371–373 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Mulder, F. A. A., Mittermaier, A., Hon, B., Dahlquist, F. W. & Kay, L. E. Studying excited states of protein by NMR spectroscopy. Nature Struct. Biol. 8, 932–935 (2001)

    Article  CAS  Google Scholar 

  6. Palmer, A. G., Kroenke, C. D. & Loria, J. P. NMR methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204–238 (2001)

    Article  CAS  Google Scholar 

  7. Shen, Y. et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl Acad. Sci. USA 105, 4685–4690 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Baase, W. A., Liu, L., Tronrud, D. E. & Matthews, B. W. Lessons from the lysozyme of phage T4. Protein Sci. 19, 631–641 (2010)

    Article  CAS  Google Scholar 

  9. Eriksson, A. E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Korzhnev, D. M. & Kay, L. E. Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc. Chem. Res. 41, 442–451 (2008)

    Article  CAS  Google Scholar 

  11. Hansen, D. F., Vallurupalli, P. & Kay, L. E. Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J. Biomol. NMR 41, 113–120 (2008)

    Article  CAS  Google Scholar 

  12. Cavalli, A., Salvatella, X., Dobson, C. M. & Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl Acad. Sci. USA 104, 9615–9620 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Vallurupalli, P., Hansen, D. F. & Kay, L. E. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc. Natl Acad. Sci. USA 105, 11766–11771 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Berjanskii, M. V. & Wishart, D. S. A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127, 14970–14971 (2005)

    Article  CAS  Google Scholar 

  16. Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503–519 (2007)

    Article  CAS  Google Scholar 

  17. Fersht, A. Structure and Mechanism in Protein Science (Freeman and Company, 1999)

    Google Scholar 

  18. Montelione, G. T. & Wagner, G. 2D chemical-exchange NMR-spectroscopy by proton detected heteronuclear correlation. J. Am. Chem. Soc. 111, 3096–3098 (1989)

    Article  CAS  Google Scholar 

  19. Farrow, N. A., Zhang, O., Forman-Kay, J. D. & Kay, L. E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994)

    Article  CAS  Google Scholar 

  20. Feher, V. A., Baldwin, E. P. & Dahlquist, F. W. Access of ligands to cavities within the core of a protein is rapid. Nature Struct. Biol. 3, 516–521 (1996)

    Article  CAS  Google Scholar 

  21. Religa, T. L., Sprangers, R. & Kay, L. E. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328, 98–102 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Hu, J. S., Grzesiek, S. & Bax, A. Two-dimensional NMR methods for determining χ1 angles of aromatic residues in proteins from three-bond JC’Cγ and JNCγ couplings. J. Am. Chem. Soc. 119, 1803–1804 (1997)

    Article  CAS  Google Scholar 

  23. Nicholson, H., Tronrud, D. E., Becktel, W. J. & Matthews, B. W. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Biopolymers 32, 1431–1441 (1992)

    Article  CAS  Google Scholar 

  24. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Jensen, R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976)

    Article  CAS  Google Scholar 

  26. Walden, W. E. et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314, 1903–1908 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Tang, C., Schwieters, C. D. & Clore, G. M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449, 1078–1082 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Liu, L. J., Baase, W. A. & Matthews, B. W. Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I···S and I···Se halogen-bonding. J. Mol. Biol. 385, 595–605 (2009)

    Article  CAS  Google Scholar 

  29. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)

    Article  CAS  Google Scholar 

  30. Rodríguez, J. C., Jennings, P. A. & Melacini, G. Using chemical exchange to assign non-covalent protein complexes in slow exchange with the free state: enhanced resolution and efficient signal editing. J. Biomol. NMR 30, 155–161 (2004)

    Article  Google Scholar 

  31. Lundström, P., Vallurupalli, P., Hansen, D. F. & Kay, L. E. Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nature Protocols 4, 1641–1648 (2009)

    Article  Google Scholar 

  32. Vallurupalli, P., Hansen, D. F., Lundstrom, P. & Kay, L. E. CPMG relaxation dispersion NMR experiments measuring glycine 1Hα and 13Cα chemical shifts in the 'invisible' excited states of proteins. J. Biomol. NMR 45, 45–55 (2009)

    Article  CAS  Google Scholar 

  33. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999)

    Article  CAS  Google Scholar 

  34. Korzhnev, D. M. et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586–590 (2004)

    Article  ADS  CAS  Google Scholar 

  35. Vallurupalli, P., Hansen, D. F., Stollar, E., Meirovitch, E. & Kay, L. E. Measurement of bond vector orientations in invisible excited states of proteins. Proc. Natl Acad. Sci. USA 104, 18473–18477 (2007)

    Article  ADS  CAS  Google Scholar 

  36. Hansen, D. F., Vallurupalli, P., Lundstrom, P., Neudecker, P. & Kay, L. E. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J. Am. Chem. Soc. 130, 2667–2675 (2008)

    Article  CAS  Google Scholar 

  37. Skrynnikov, N. R., Dahlquist, F. W. & Kay, L. E. Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J. Am. Chem. Soc. 124, 12352–12360 (2002)

    Article  CAS  Google Scholar 

  38. Bouvignies, G. et al. A simple method for measuring signs of 1HN chemical shift differences between ground and excited protein states. J. Biomol. NMR 47, 135–141 (2010)

    Article  CAS  Google Scholar 

  39. Orekhov, V. Y., Korzhnev, D. M. & Kay, L. E. Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins. J. Am. Chem. Soc. 126, 1886–1891 (2004)

    Article  CAS  Google Scholar 

  40. Hu, J. S. & Bax, A. Determination of ϕ and χ1 angles in proteins from 13C-13C three-bond J couplings measured by three-dimensional heteronuclear NMR. How planar is the peptide bond? J. Am. Chem. Soc. 119, 6360–6368 (1997)

    Article  CAS  Google Scholar 

  41. Delaglio, F. et al. NMRpipe – a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  42. Goddard, T. D. & Kneller, D. G. SPARKY 3 (University of California, San Francisco, 2006)

  43. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct. Funct. Bioinform. 59, 687–696 (2005)

    Article  CAS  Google Scholar 

  44. Mulder, F. A., Hon, B., Muhandiram, D. R., Dahlquist, F. W. & Kay, L. E. Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR. Biochemistry 39, 12614–12622 (2000)

    Article  CAS  Google Scholar 

  45. McConnell, H. M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958)

    Article  ADS  CAS  Google Scholar 

  46. Sprangers, R., Gribun, A., Hwang, P. M., Houry, W. A. & Kay, L. E. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc. Natl Acad. Sci. USA 102, 16678–16683 (2005)

    Article  ADS  CAS  Google Scholar 

  47. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes in C. The Art of Scientific Computing 2nd edn (Cambridge Univ. Press, 1992)

    MATH  Google Scholar 

  48. Loken, C. et al. SciNet: Lessons learned from building a power-efficient top-20 system and data centre. J. Phys. Conf. Ser. 256, 012026 (2010)

    Article  Google Scholar 

  49. The PyMOL Molecular Graphics System, Version 1.3 (Schrödinger, LLC, 2010)

  50. Pettersen, E. F. et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  51. Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830–838 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Forman-Kay for providing laboratory space, and J. Forman-Kay and T. Alber for discussions. G.B. acknowledges The European Molecular Biology Organization and The Canadian Institutes of Health Research (CIHR) for postdoctoral fellowships. L.E.K. holds a Canada Research Chair in Biochemistry. This work was supported by the CIHR and the Natural Sciences and Engineering Research Council of Canada, with computations performed on the GPC supercomputer at the SciNet HPC Consortium.

Author information

Authors and Affiliations

Authors

Contributions

G.B., P.V. and D.F.H. made samples. G.B., P.V., D.F.H. and L.E.K. designed and performed all NMR experiments. G.B., P.V., B.E.C., O.L. and R.M.V. performed structure calculations. G.B., P.V. and A.B. carried out initial crystallization trials. F.W.D, D.B., G.B., P.V. and L.E.K. designed experiments and wrote the paper.

Corresponding author

Correspondence to Lewis E. Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends, Supplementary Tables 1-9 and additional references. (PDF 4402 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvignies, G., Vallurupalli, P., Hansen, D. et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477, 111–114 (2011). https://doi.org/10.1038/nature10349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10349

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing