Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase

Abstract

Nitrous oxide (N2O) is generated by natural and anthropogenic processes and has a critical role in environmental chemistry. It has an ozone-depleting potential similar to that of hydrochlorofluorocarbons as well as a global warming potential exceeding that of CO2 300-fold1,2. In bacterial denitrification, N2O is reduced to N2 by the copper-dependent nitrous oxide reductase (N2OR)3. This enzyme carries the mixed-valent CuA centre and the unique, tetranuclear CuZ site. Previous structural data were obtained with enzyme isolated in the presence of air that is catalytically inactive without prior reduction. Its CuZ site was described as a [4Cu:S] centre, and the substrate-binding mode and reduction mechanism remained elusive. Here we report the structure of purple N2OR from Pseudomonas stutzeri, handled under the exclusion of dioxygen, and locate the substrate in N2O-pressurized crystals. The active CuZ cluster contains two sulphur atoms, yielding a [4Cu:2S] stoichiometry; and N2O bound side-on at CuZ, in close proximity to CuA. With the substrate located between the two clusters, electrons are transferred directly from CuA to N2O, which is activated by side-on binding in a specific binding pocket on the face of the [4Cu:2S] centre. These results reconcile a multitude of available biochemical data on N2OR that could not be explained by earlier structures, and outline a mechanistic pathway in which both metal centres and the intervening protein act in concert to achieve catalysis. This structure represents the first direct observation, to our knowledge, of N2O bound to its reductase, and sheds light on the functionality of metalloenzymes that activate inert small-molecule substrates. The principle of using distinct clusters for substrate activation and for reduction may be relevant for similar systems, in particular nitrogen-fixing nitrogenase4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N2OR from Pseudomonas stutzeri.
Figure 2: The copper sites of purple P. stutzeri N 2 OR.
Figure 3: Substrate binding in N 2 OR.
Figure 4: Changes in the electron excitation spectrum of N 2 OR form I upon binding of the substrate N 2 O.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates for the reported crystal structures have been deposited with the Protein Data Bank under accession codes 3SBP (native1), 3SBQ (native2) and 3SBR (N2O adduct).

References

  1. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Zumft, W. G. & Kroneck, P. M. H. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol. 52, 107–227 (2006)

    Article  Google Scholar 

  4. Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nature Geosci. 3, 341–344 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Einsle, O. & Kroneck, P. M. H. Structural basis of denitrification. Biol. Chem. 385, 875–883 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010)

    Article  CAS  Google Scholar 

  11. Kroneck, P. M. H., Antholine, W. A., Riester, J. & Zumft, W. G. The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. FEBS Lett. 248, 212–213 (1989)

    Article  CAS  PubMed  Google Scholar 

  12. Savelieff, M. G. & Lu, Y. CuA centers and their biosynthetic models in azurin. J. Biol. Inorg. Chem. 15, 461–483 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen, T., Brittain, T., Berks, B. C., Watmough, N. J. & Thomson, A. J. Formation of a cytochrome c–nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus. Dalton Transact. 21, 3501–3506 (2005)

    Article  Google Scholar 

  14. Brown, K. et al. A novel type of catalytic copper cluster in nitrous oxide reductase. Nature Struct. Biol. 7, 191–195 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Rasmussen, T. et al. The catalytic center in nitrous oxide reductase, CuZ, is a copper–sulfide cluster. Biochemistry 39, 12753–12756 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Haltia, T. et al. The crystal stucture of nitrous oxide reductase (N2OR) from Paracoccus denitrificans at 1.6 Å resolution. Biochem. J. 369, 77–88 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paraskevopoulos, K., Antonyuk, S. V., Sawers, R. G., Eady, R. R. & Hasnain, S. S. Insight into catalysis of nitrous oxide reductase from high-resolution structures of resting and inhibitor-bound enzyme from Achromobacter cycloclastes. J. Mol. Biol. 362, 55–65 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Gorelsky, S. I., Ghosh, S. & Solomon, E. I. Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. 128, 278–290 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, S. et al. Activation of N2O reduction by the fully reduced µ4-sulfide bridged tetranuclear CuZ cluster in nitrous oxide reductase. J. Am. Chem. Soc. 125, 15708–15709 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Zumft, W. G. & Matsubara, T. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous-oxide respiration in Pseudomonas perfectomarinus. FEBS Lett. 148, 107–112 (1982)

    Article  CAS  Google Scholar 

  21. Coyle, C. L., Zumft, W. G., Kroneck, P. M. H., Körner, H. & Jakob, W. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina—purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153, 459–467 (1985)

    Article  CAS  PubMed  Google Scholar 

  22. Riester, J., Zumft, W. G. & Kroneck, P. M. H. Nitrous oxide reductase from Pseudomonas stutzeri—redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur. J. Biochem. 178, 751–762 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. Fujita, K., Chan, J. M., Bollinger, J. A., Alvarez, M. L. & Dooley, D. M. Anaerobic purification, characterization and preliminary mechanistic study of recombinant nitrous oxide reductase from Achromobacter cycloclastes. J. Inorg. Biochem. 101, 1836–1844 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Dell’Acqua, S. et al. A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J. Biol. Inorg. Chem. 15, 967–976 (2010)

    Article  PubMed  Google Scholar 

  25. Kroneck, P. M. H., Antholine, W. A., Riester, J. & Zumft, W. G. The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron-paramagnetic resonance investigation. FEBS Lett. 242, 70–74 (1988)

    Article  CAS  PubMed  Google Scholar 

  26. Brown, K. et al. Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase: evidence of a bridging inorganic sulfur. J. Biol. Chem. 275, 41133–41136 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Shriver, D. F. & Atkins, P. W. Inorganic Chemistry 3rd edn, 227–236 (Oxford Univ. Press, 2001)

    Google Scholar 

  28. Solomon, E. I. Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Inorg. Chem. 45, 8012–8025 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Paulat, F. et al. Spectroscopic properties and electronic structure of pentammineruthenium(II) dinitrogen oxide and corresponding nitrosyl complexes: binding mode of N2O and reactivity. Inorg. Chem. 43, 6979–6994 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri. Acta Crystallogr. F 66, 1541–1543 (2010)

    Article  CAS  Google Scholar 

  31. Zumft, W. G. & Matsubara, T. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett. 148, 107–112 (1982)

    Article  CAS  Google Scholar 

  32. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. DeLano, W. L. The PyMOL molecular graphics system 〈http://www.pymol.org 〉 (2002)

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (IRTG 1422) and the Center for Biological Signalling Studies (bioss, EXC 294). We thank the beam line staff at the Swiss Light Source for their assistance with data collection, T. Spatzal, K. Dörner and T. Friedrich for recording EPR spectra and F. Neese for discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.P., W.G.Z. and O.E. performed the experiments, A.P. and O.E. built and refined the structural model, P.M.H.K. and O.E. designed the experiments, O.E., P.K. and W.G.Z. wrote the manuscript.

Corresponding author

Correspondence to Oliver Einsle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-7 with legends, Supplementary Methods, Supplementary Table 1, a Supplementary Discussion and additional references. (PDF 2844 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomowski, A., Zumft, W., Kroneck, P. et al. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature 477, 234–237 (2011). https://doi.org/10.1038/nature10332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10332

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology