MicroRNA-mediated conversion of human fibroblasts to neurons


Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons1,2. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function3,4,5,6. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions4. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function5,7,8,9,10,11,12,13, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by NEUROD2. Further addition of neurogenic transcription factors ASCL1 and MYT1L enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: miRNA-induced transformation of human fibroblasts.
Figure 2: Additional neural factors enhance the conversion to neurons.
Figure 3: Characterization of induced neurons and nBAF subunit expression.
Figure 4: Conversion of adult fibroblasts by miR-9/9*-124-DAM.


  1. 1

    Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hansen, D. V., Rubenstein, J. L. & Kriegstein, A. R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011)

    CAS  Article  Google Scholar 

  3. 3

    Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Wu, J. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Packer, A. N., Xing, Y., Harper, S. Q., Jones, L. & Davidson, B. L. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J. Neurosci. 28, 14341–14346 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Cheng, L. C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci. 12, 399–408 (2009)

    CAS  Article  Google Scholar 

  11. 11

    Krichevsky, A. M., Sonntag, K. C., Isacson, O. & Kosik, K. S. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857–864 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Maiorano, N. A. & Mallamaci, A. Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Develop. 4, 40 (2009)

    Article  Google Scholar 

  13. 13

    Tang, X. et al. A simple array platform for microRNA analysis and its application in mouse tissues. RNA 13, 1803–1822 (2007)

    CAS  Article  Google Scholar 

  14. 14

    Lin, C. H. et al. The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning. Proc. Natl Acad. Sci. USA 102, 14877–14882 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    McCormick, M. B. et al. neuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Mol. Cell. Biol. 16, 5792–5800 (1996)

    CAS  Article  Google Scholar 

  16. 16

    Olson, J. M. et al. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev. Biol. 234, 174–187 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Ince-Dunn, G. et al. Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49, 683–695 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993)

    CAS  Article  Google Scholar 

  19. 19

    Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Parrish, J. Z., Kim, M. D., Jan, L. Y. & Jan, Y. N. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 20, 820–835 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA 106, 5187–5191 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Ho, L., Miller, E. L., Ronan, J. L., Ho, W. Q., Jothi, R. & Crabtree, G. R. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signaling and by regulating polycomb function. Nature Cell Biol. (in the press)

  23. 23

    Coolen, M. & Bally-Cuif, L. MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol. 19, 461–470 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Wu, J. & Xie, X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol. 7, R85 (2006)

    Article  Google Scholar 

  25. 25

    Laneve, P. et al. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res. 38, 6895–6905 (2010)

    CAS  Article  Google Scholar 

  26. 26

    Andres, M. E. et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA 96, 9873–9878 (1999)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods 51, 107–116 (1994)

    ADS  CAS  Article  Google Scholar 

Download references


We thank I. Graef and A. Cho for helpful suggestions and reagents, A. Kuo and W. Ho for technical help, and X. Bao and P. Khavari for their generous gift of reagents. A.S.Y. is a fellow of the Helen Hay Whitney Foundation. A.X.S. is funded by the Agency of Science, Technology and Research of Singapore (A*STAR). L.L. is supported by the Stanford Medical Scientist Training Program, National Institutes of Mental Health (NIMH) F30MH093125, and the Frances B. Nelson predoctoral fellowship. A.S. is supported by the CIRM post-doctoral fellowship. T.P. is supported by a Swiss National Science Foundation SNSF fellowship for advanced researchers (PA00P3_134196). R.E.D. is supported by the NIH Director’s Award, and awards from the Simon’s Foundation and the CIRM. R.E.D. is also grateful for funding from B. and F. Horowitz, M. McCafferey, B. and J. Packard, P. Kwan and K. Wang. R.W.T. is supported by grants from the Simons, Mathers and Burnett Family Foundations. This work was supported by grants from the Howard Hughes Medical Institute (G.R.C.) and the NIH (HD55391, AI060037 and NS046789 to G.R.C., and NS24067, GM58234 and MH064070 to R.W.T.).

Author information




A.S.Y., A.X.S., and G.R.C. generated the hypotheses and designed experiments. A.S.Y. and A.X.S. performed experiments, generated data in all figures and Supplementary Data. A.S. and L.L. designed and performed experiments for Figs 1, 2 and 4 and Supplementary Data. T.P. designed and performed experiments in Fig. 3a. Y.L. generated data presented in Fig. 1. C.L.-M. performed experiments for Supplementary Data. A.S.Y., A.X.S., L.L., A.S., Y.L., T.P., R.W.T., R.E.D. and G.R.C. wrote the manuscript.

Corresponding authors

Correspondence to Andrew S. Yoo or Gerald R. Crabtree.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-19 with legends. (PDF 9562 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoo, A., Sun, A., Li, L. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011). https://doi.org/10.1038/nature10323

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing