Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A young source for the Hawaiian plume

Subjects

Abstract

Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism1. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5 billion years (Gyr)2,3,4,5. However, if such correlations are produced by mixing of unrelated mantle components6 they will have no direct age significance. Re–Os decay model ages take into account the mixing of sources with different histories7,8, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction9. Here we report the first data on 87Sr/86Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200–650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique ‘time stamp’ on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200–650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1) cm yr−1, much faster than previously thought.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Compositions of lavas and melt inclusions in olivine phenocrysts from recent (younger than 50 kyr) eruptions of Mauna Loa volcano, Hawaii.
Figure 2: Primitive mantle 31 normalized concentrations of incompatible elements in melt inclusions in euhedral olivine crystals from a single sample (K97-15b) of Puu Wahi scoria cone, Mauna Loa, Hawaii.
Figure 3: 87 Sr/ 86 Sr ratios in melt inclusions and matrix glass in euhedral olivine crystals of sample (K97-15b), Puu Wahi scoria cone, Mauna Loa, Hawaii.
Figure 4: 87 Sr/ 86 Sr ratios of the two most radiogenic Mauna Loa melt inclusions superimposed on the time evolution of Sr isotopic composition of sea water.

References

  1. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    ADS  CAS  Article  Google Scholar 

  2. Chase, C. G. Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett. 52, 277–284 (1981)

    ADS  CAS  Article  Google Scholar 

  3. McKenzie, D. et al. Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochim. Cosmochim. Acta 68, 2699–2724 (2004)

    ADS  CAS  Article  Google Scholar 

  4. Sun, S. S. & Hanson, G. N. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib. Mineral. Petrol. 52, 77–106 (1975)

    ADS  CAS  Article  Google Scholar 

  5. Tatsumoto, M. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett. 38, 63–87 (1978)

    ADS  CAS  Article  Google Scholar 

  6. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282, 314–322 (2009)

    ADS  CAS  Article  Google Scholar 

  7. Brandon, A. D., Graham, D. W., Waight, T. & Gautason, B. 186Os and 187Os enrichments and high-3He/4He sources in the Earth’s mantle: evidence from Icelandic picrites. Geochim. Cosmochim. Acta 71, 4570–4591 (2007)

    ADS  CAS  Article  Google Scholar 

  8. Sobolev, A. V., Hofmann, A. W., Brügmann, G., Batanova, V. G. & Kuzmin, D. V. A quantitative link between recycling and osmium isotopes. Science 321, 536 (2008)

    ADS  CAS  Article  Google Scholar 

  9. Sun, W. D., Bennett, V. C. & Kamenetsky, V. S. The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions. Earth Planet. Sci. Lett. 222, 101–114 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Sobolev, A. V. Melt inclusions in minerals as a source of principal petrological information. Petrology 4, 209–220 (1996)

    Google Scholar 

  11. Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H. & Layne, G. D. Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia. Science 282, 1481–1484 (1998)

    CAS  Article  Google Scholar 

  12. Jackson, M. G. & Hart, S. R. Strontium isotopes in melt inclusions from Samoan basalts: implications for heterogeneity in the Samoan plume. Earth Planet. Sci. Lett. 245, 260–277 (2006)

    ADS  CAS  Article  Google Scholar 

  13. Sobolev, A. V., Hofmann, A. W. & Nikogosian, I. K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–990 (2000)

    ADS  CAS  Article  Google Scholar 

  14. Sobolev, A. V. & Shimizu, N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363, 151–154 (1993)

    ADS  CAS  Article  Google Scholar 

  15. Hofmann, A. W. in Treatise on Geochemistry Vol. 2 (eds Holland, H. D. & Turekian, K. K. ) 61–101 (Elsevier, 2003)

    Google Scholar 

  16. Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010)

    ADS  CAS  Article  Google Scholar 

  17. Muinos, S. B. et al. New constraints on the Pb and Nd isotopic evolution of NE Atlantic water masses. Geochem. Geophys. Geosyst. 9, Q02007 (2008)

    ADS  Article  Google Scholar 

  18. Staudigel, H., Plank, T., White, W. M. & Schmincke, H. U. in SUBCON: Subduction from Top to Bottom Vol. 96 (eds Bebout, G. E. & Kirby, S. H. ) 19–38 (American Geophysical Union, 1996)

    Google Scholar 

  19. Veizer, J. et al. Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999)

    ADS  CAS  Article  Google Scholar 

  20. Staudigel, H., Hart, S. R. & Richardson, S. H. Alteration of the oceanic crust: Processes and timing. Earth Planet. Sci. Lett. 52, 311–327 (1981)

    ADS  CAS  Article  Google Scholar 

  21. Marschall, H. R., Altherr, R. & Rupke, L. Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem. Geol. 239, 323–335 (2007)

    ADS  CAS  Article  Google Scholar 

  22. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, 1031 (2002)

    Article  Google Scholar 

  23. Halverson, G. P., Dudas, F. O., Maloof, A. C. & Bowring, S. A. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 103–129 (2007)

    Article  Google Scholar 

  24. Ross, K. & Elthon, D. Cumulates from strongly depleted mid-ocean-ridge basalt. Nature 365, 826–829 (1993)

    ADS  CAS  Article  Google Scholar 

  25. Benoit, M., Ceuleneer, G. & Polvé, M. The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402, 514–518 (1999)

    ADS  CAS  Article  Google Scholar 

  26. Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem. Geol. 169, 187–209 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    ADS  CAS  Article  Google Scholar 

  29. Jochum, K. P., Stoll, B., Weis, U., Kuzmin, D. V. & Sobolev, A. V. In situ Sr isotopic analysis of low Sr silicates using LA-ICP-MS. J. Anal. At. Spectrom. 24, 1237–1243 (2009)

    CAS  Article  Google Scholar 

  30. Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Improvement of in situ Pb isotope analysis by LA-ICP-MS using a 193 nm Nd:YAG laser. J. Anal. At. Spectrom. 21, 666–675 (2006)

    CAS  Article  Google Scholar 

  31. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  32. Jarosevich, E. J., Nelen, J. A. & Norberg, J. A. Reference sample for electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980)

    Article  Google Scholar 

  33. Jochum, K. P. et al. The preparation and preliminary characterization of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand. Newsl. 24, 87–133 (2000)

    CAS  Article  Google Scholar 

  34. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    ADS  CAS  Article  Google Scholar 

  35. Niu, Y. L. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 45, 2423–2458 (2004)

    ADS  CAS  Article  Google Scholar 

  36. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002)

    ADS  CAS  Article  Google Scholar 

  37. Bach, W., Peucker-Ehrenbrink, B., Hart, S. R. & Blusztajn, J. S. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—implications for seawater–crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem. Geophys. Geosyst. 4 10.1029/2002GC000419 (2003)

  38. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. T. Anderson for providing the Puu-Wahi sample, N. Groschopf for help in managing the electron probe microanalyser, A. Yasevich and O. Kuzmina for sample preparation, and G. Wörner, N. Arndt and F. Holtz for discussions. This study was funded by an Agence Nationale de la Recherche, France, Chair of Excellence grant (ANR-09-CEXC-003-01) to A.V.S.. Partial support by a Gauss Professorship in Göttingen University, Germany, the Russian Foundation for Basic Research (09-05-01193a), a Russian President grant for leading Russian scientific schools (НШ-3919.2010.5), and Earth Sciences Department of Russian Academy grants to A.V.S. are also acknowledged. This is Lamont Doherty Earth Observatory contribution 7479.

Author information

Authors and Affiliations

Authors

Contributions

A.V.S. designed the project. A.V.S. and A.W.H. conceived the interpretation and the model and wrote the paper. K.P.J. developed the analytical methods for isotope measurements by LA-ICP-MS. D.V.K. processed samples. D.V.K. and B.S. took the measurements. All authors contributed intellectually to the paper.

Corresponding author

Correspondence to Alexander V. Sobolev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends, Supplementary Text and additional references. (PDF 4082 kb)

Supplementary Tables

The file contains Supplementary Tables 1-4. (XLS 460 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobolev, A., Hofmann, A., Jochum, K. et al. A young source for the Hawaiian plume. Nature 476, 434–437 (2011). https://doi.org/10.1038/nature10321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10321

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing