Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nuclear export dynamics of RNA–protein complexes

Abstract

The central dogma of molecular biology — DNA makes RNA makes proteins — is a flow of information that in eukaryotes encounters a physical barrier: the nuclear envelope, which encapsulates, organizes and protects the genome. Nuclear-pore complexes, embedded in the nuclear envelope, regulate the passage of molecules to and from the nucleus, including the poorly understood process of the export of RNAs from the nucleus. Recent imaging approaches focusing on single molecules have provided unexpected insight into this crucial step in the information flow. This review addresses the latest studies of RNA export and presents some models for how this complex process may work.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nuclear-pore complex basic structure and function.
Figure 2: Modes of transport.
Figure 3: Transport of cargoes.
Figure 4: Imaging of NPC transport events one molecule at a time.

References

  1. Franke, W. W. & Scheer, U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation J. Ultrastruct. Res. 30, 288–316 (1970).

    CAS  PubMed  Google Scholar 

  2. Walde, S. & Kehlenbach, R. H. The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport. Trends Cell Biol. 20, 461–469 (2010).

    PubMed  Google Scholar 

  3. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    CAS  PubMed  Google Scholar 

  4. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).

    CAS  PubMed  Google Scholar 

  5. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007). This study describes an approach to combine different experimental data into a common framework with a defined error, underlining the essential features of NPC architecture.

    ADS  CAS  PubMed  Google Scholar 

  6. Strawn, L. A., Shen, T. X., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004).

    CAS  PubMed  Google Scholar 

  7. Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

    ADS  CAS  PubMed  Google Scholar 

  8. Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 111, 148–157 (1993).

    CAS  PubMed  Google Scholar 

  9. Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol. 145, 272–288 (2004).

    CAS  PubMed  Google Scholar 

  10. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. Grünwald, D. & Singer, R. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467, 604–607 (2010). This is the first study to follow a single mRNA in detail through the NPC, showing that overall transport times are fast, hundreds of milliseconds, and that docking and release are visible kinetic steps.

    ADS  PubMed  PubMed Central  Google Scholar 

  12. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    CAS  PubMed  Google Scholar 

  13. Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).

    ADS  CAS  PubMed  Google Scholar 

  14. Keminer, O. & Peters, R. Permeability of single nuclear pores. Biophys. J. 77, 217–228 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo . J. Cell Biol. 175, 579–593 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol. 183, 77–86 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA 96, 9622–9627 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kopito, R. B. & Elbaum, M. Reversibility in nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 104, 12743–12748 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 8, 1814–1827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    ADS  CAS  PubMed  Google Scholar 

  25. Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    ADS  CAS  PubMed  Google Scholar 

  26. Frey, S. & Gorlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    CAS  PubMed  Google Scholar 

  27. Eisele, N. B., Frey, S., Piehler, J., Gorlich, D. & Richter, R. P. Ultrathin nucleoporin phenylalanine–glycine repeat films and their interaction with nuclear transport receptors. EMBO Rep. 11, 366–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    CAS  PubMed  Google Scholar 

  30. Peters, R. The nanopore connection to cell membrane unitary permeability. Traffic 6, 199–204 (2005).

    CAS  PubMed  Google Scholar 

  31. Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics 9, 2205–2224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol. 3, e125 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  34. Zilman, A. et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput. Biol. 6, e1000804 (2010).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  35. Huve, J., Wesselmann, R., Kahms, M. & Peters, R. 4Pi microscopy of the nuclear pore complex. Biophys. J. 95, 877–885 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Kahms, M., Lehrich, P., Huve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10, 1228–1242 (2009).

    CAS  PubMed  Google Scholar 

  37. Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA 107, 7305–7310 (2010). In this study, very high spatial resolution is achieved by a combination of confocal excitation with camera detection and modelling of data, supporting the existence of defined cargo transport routes within the NPC.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kopito, R. B. & Elbaum, M. Nucleocytoplasmic transport: a thermodynamic mechanism. HFSP J. 3, 130–141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, W., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nature Cell Biol. 12, 543–552 (2010). In this paper, various large exogenous mRNP cargos are followed in vivo , and their progress from the transcription site to the NPC is shown to be slow (minutes), whereas nuclear transport is more rapid (seconds).

    CAS  PubMed  Google Scholar 

  41. Feldherr, C. M., Kallenbach, E. & Schultz, N. Movement of a karyophilic protein through the nuclear pores of oocytes. J. Cell Biol. 99, 2216–2222 (1984).

    CAS  PubMed  Google Scholar 

  42. Dworetzky, S. I. & Feldherr, C. M. Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J. Cell Biol. 106, 575–584 (1988).

    CAS  PubMed  Google Scholar 

  43. Richardson, W. D., Mills, A. D., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52, 655–664 (1988).

    CAS  PubMed  Google Scholar 

  44. Yang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell. Biol. 174, 951–961 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods 5, 159–161 (2008). This study introduces a careful calibration of a simple light shield technique for fluorescence imaging, and is the first direct visualization of the high occupancy of NPCs with several individual transport receptors in vivo.

    CAS  PubMed  Google Scholar 

  47. Ellis, R. J. Protein folding — inside the cage. Nature 442, 360–362 (2006).

    ADS  CAS  PubMed  Google Scholar 

  48. Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600–603 (2010). This paper presents the constraints on large cargo transport for artificial, not deformable, cargo, showing the lower time limit for NPC translocation and the upper limit for cargo diameter.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, C., Yang, W., Tu, L. C. & Musser, S. M. Single-molecule measurements of importin α-cargo complex dissociation at the nuclear pore. Proc. Natl Acad. Sci. USA 105, 8613–8618 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fiserova, J., Richards, S. A., Wente, S. R. & Goldberg, M. W. Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. J. Cell Sci. 123, 2773–2780 (2010). References 37 and 51 use ultrastructural studies and super-fast freezing of samples to capture cargo within the NPC in intact cells, demonstrating that cargo can travel along specific routes in the NPC.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).

    CAS  PubMed  Google Scholar 

  53. Dimitrov, D. I., Milchev, A. & Binder, K. Polymer brushes in cylindrical pores: simulation versus scaling theory. J. Chem. Phys. 125, 34905 (2006).

    CAS  PubMed  Google Scholar 

  54. Mehlin, H., Daneholt, B. & Skoglund, U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear-pore studied with electron-microscope tomography. Cell 69, 605–613 (1992).

    CAS  PubMed  Google Scholar 

  55. Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Google Scholar 

  56. Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys. J. 58, 341–355 (1990).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iborra, F. J., Jackson, D. A. & Cook, P. R. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J. Cell Sci. 113, 291–302 (2000).

    CAS  PubMed  Google Scholar 

  58. Siebrasse, J. P. & Kubitscheck, U. Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics. Methods Mol. Biol. 464, 343–361 (2009).

    PubMed  Google Scholar 

  59. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).

    CAS  PubMed  Google Scholar 

  60. Siebrasse, J. P. et al. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc. Natl Acad. Sci. USA 105, 20291–20296 (2008). This careful analysis of RNP mobility within the nucleus demonstrates that different mobility distributions observed for an RNP are best explained by single molecules alternating between tethering and diffusion.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci. 111, 223–236 (1998).

    CAS  PubMed  Google Scholar 

  62. Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell 16, 5610–5620 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dargemont, C. & Kuhn, L. C. Export of mRNA from microinjected nuclei of Xenopus laevis oocytes. J. Cell Biol. 118, 1–9 (1992).

    CAS  PubMed  Google Scholar 

  64. Montpetit, B. et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472, 238–242 (2011). This study presents the atomic structures of protein complexes for mRNA and factors that have been implicated in NPC-related export, and provides a model for how the release step of large cargo from the NPC is achieved.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319 (2001).

    CAS  PubMed  Google Scholar 

  66. Reed, R. & Hurt, E. A conserved rnRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).

    CAS  PubMed  Google Scholar 

  67. Kota, K. P., Wagner, S. R., Huerta, E., Underwood, J. M. & Nickerson, J. A. Binding of ATP to UAP56 is necessary for mRNA export. J. Cell Sci. 121, 1526–1537 (2008).

    CAS  PubMed  Google Scholar 

  68. Carmody, S. R. & Wente, S. R. mRNA nuclear export at a glance. J. Cell Sci. 122, 1933–1937 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 25, 327–330 (2007).

    CAS  PubMed  Google Scholar 

  70. Rodriguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol. 23, 302–309 (2011).

    CAS  PubMed  Google Scholar 

  71. Braun, I. C., Herold, A., Rode, M. & Izaurralde, E. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol. Cell. Biol. 22, 5405–5418 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Segref, A. et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16, 3256–3271 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y. et al. An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature 443, 234–237 (2006).

    ADS  CAS  PubMed  Google Scholar 

  74. Hutten, S. & Kehlenbach, R. H. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 17, 193–201 (2007).

    CAS  PubMed  Google Scholar 

  75. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Forler, D. et al. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol. Cell. Biol. 24, 1155–1167 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  78. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    CAS  PubMed  Google Scholar 

  80. Linder, P. mRNA export: RNP remodeling by DEAD-box proteins. Curr. Biol. 18, R297–R299 (2008).

    CAS  PubMed  Google Scholar 

  81. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299–306 (2006).

    CAS  PubMed  Google Scholar 

  83. Bolger, T. A., Folkmann, A. W., Tran, E. J. & Wente, S. R. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134, 624–633 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Struct. Mol. Biol. 16, 247–254 (2009).

    CAS  Google Scholar 

  85. Alcazar-Roman, A. R., Bolger, T. A. & Wente, S. R. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem. 285, 16683–16692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Noble, K. N., Tran, E. J., Alcázar-Román, A. R., Hodge, C. A., Cole, C. N. & Wente, S. R. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 25, 1065–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila . Curr. Biol. 11, 1716–1721 (2001).

    CAS  PubMed  Google Scholar 

  88. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    CAS  PubMed  Google Scholar 

  89. Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–119 (2001).

    CAS  PubMed  Google Scholar 

  90. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008). Using fixed cells, this work gives a first glance at the possible contributions of super-resolution microscopy, providing high-resolution images of nuclear structure and showing how NPCs may be made accessible for large cargo.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Terry, L. J. & Wente, S. R. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. J. Cell Biol. 178, 1121–1132 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lo, K. Y. & Johnson, A. W. Reengineering ribosome export. Mol. Biol. Cell 20, 1545–1554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shitashige, M. et al. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 134, 1961–1971 (2008).

    CAS  PubMed  Google Scholar 

  94. Alvisi, G., Rawlinson, S. M., Ghildyal, R., Ripalti, A. & Jans, D. A. Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? Biochim. Biophys. Acta 1784, 213–227 (2008).

    CAS  PubMed  Google Scholar 

  95. Hurt, J. A. & Silver, P. A. mRNA nuclear export and human disease. Dis. Model Mech. 1, 103–108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Powrie, E. A., Zenklusen, D. & Singer, R. H. A nucleoporin, Nup60p, affects the nuclear and cytoplasmic localization of ASH1 mRNA in S. cerevisiae . RNA 17, 134–144 (2010).

    PubMed  Google Scholar 

  98. Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    CAS  PubMed  Google Scholar 

  99. Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc. Natl Acad. Sci. USA 104, 1853–1858 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, C. P. & Chen, M. R. Escape of herpesviruses from the nucleus. Rev. Med. Virol. 20, 214–230 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose work, through space considerations, could not be discussed or cited in this review. This work has been supported by funds from the Kavli Foundation to D.G., National Institutes of Health grants GM86217 and GM84364 to R.H.S., and GM062427, RR022220 and GM071329 to M.R. We thank A. Joseph for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grünwald, D., Singer, R. & Rout, M. Nuclear export dynamics of RNA–protein complexes. Nature 475, 333–341 (2011). https://doi.org/10.1038/nature10318

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10318

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing