Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic molecular processes mediate cellular mechanotransduction

Abstract

Cellular responses to mechanical forces are crucial in embryonic development and adult physiology, and are involved in numerous diseases, including atherosclerosis, hypertension, osteoporosis, muscular dystrophy, myopathies and cancer. These responses are mediated by load-bearing subcellular structures, such as the plasma membrane, cell-adhesion complexes and the cytoskeleton. Recent work has demonstrated that these structures are dynamic, undergoing assembly, disassembly and movement, even when ostensibly stable. An emerging insight is that transduction of forces into biochemical signals occurs within the context of these processes. This framework helps to explain how forces of varying strengths or dynamic characteristics regulate distinct signalling pathways.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Switch-like models of mechanotransduction.
Figure 2: The focal-adhesion clutch.
Figure 3: Dynamic aspects of mechanotransduction.

References

  1. Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

    CAS  PubMed  Article  Google Scholar 

  2. Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci. 121, 3285–3292 (2008).

    CAS  PubMed  Article  Google Scholar 

  3. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    CAS  Article  Google Scholar 

  4. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nature Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  Article  Google Scholar 

  5. Lucitti, J. L. et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134, 3317–3326 (2007).

    CAS  PubMed  Article  Google Scholar 

  6. Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450, 285–288 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Article  Google Scholar 

  11. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dado, D. & Levenberg, S. Cell–scaffold mechanical interplay within engineered tissue. Semin. Cell Dev. Biol. 20, 656–664 (2009).

    CAS  PubMed  Article  Google Scholar 

  13. Zemel, A. & Safran, S. A. Theoretical concepts and models of cellular mechanosensing. Methods Cell Biol. 98, 143–175 (2010).

    PubMed  Article  Google Scholar 

  14. Saratzis, A. et al. Abdominal aortic aneurysm: a review of the genetic basis. Angiology 62, 18–32 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Chandrasekharan, K. & Martin, P. T. Genetic defects in muscular dystrophy. Methods Enzymol. 479, 291–322 (2010).

    CAS  PubMed  Article  Google Scholar 

  17. Laurent, S., Boutouyrie, P. & Lacolley, P. Structural and genetic bases of arterial stiffness. Hypertension 45, 1050–1055 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. Yu, H., Mouw, J. K. & Weaver, V. M. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21, 47–56 (2011).

    PubMed  Article  Google Scholar 

  19. Schwartz, M. A. & DeSimone, D. W. Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20, 551–556 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., Liu, J. & Weitz, D. A. Chapter 19 Mechanical response of cytoskeletal networks. Methods Cell Biol. 89, 487–519 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Helmke, B. P., Rosen, A. B. & Davies, P. F. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84, 2691–2699 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005). This paper identifies a crucial complex, consisting of PECAM1, VE-cadherin and VEGFR-2, in the pathway leading to integrin activation by shear flow.

    ADS  CAS  PubMed  Article  Google Scholar 

  23. Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119, 508–518 (2006).

    CAS  PubMed  Article  Google Scholar 

  24. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626–6631 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Wang, N. & Stamenovic, D. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279, C188–C194 (2000).

    CAS  PubMed  Article  Google Scholar 

  26. Hayakawa, K., Tatsumi, H. & Sokabe, M. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121, 496–503 (2008).

    CAS  PubMed  Article  Google Scholar 

  27. Poh, Y. C. et al. Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS ONE 4, e7886 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. Árnadóttir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).

    PubMed  Article  CAS  Google Scholar 

  30. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J. M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    CAS  PubMed  Article  Google Scholar 

  32. Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Ziegler, W. H., Gingras, A. R., Critchley, D. R. & Emsley, J. Integrin connections to the cytoskeleton through talin and vinculin. Biochem. Soc. Trans. 36, 235–239 (2008).

    CAS  PubMed  Article  Google Scholar 

  34. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009). This study demonstrates force-induced binding of vinculin to cryptic sites in talin at the single molecule level.

    ADS  CAS  Article  PubMed  Google Scholar 

  35. Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nature Cell Biol. 10, 1062–1068 (2008).

    CAS  PubMed  Article  Google Scholar 

  36. Defilippi, P., Di Stefano, P. & Cabodi, S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 16, 257–263 (2006).

    CAS  PubMed  Article  Google Scholar 

  37. Tamada, M., Sheetz, M. P. & Sawada, Y. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7, 709–718 (2004).

    CAS  PubMed  Article  Google Scholar 

  38. Sawada, Y. et al. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. J. Cell Sci. 114, 1221–1227 (2001).

    CAS  PubMed  Article  Google Scholar 

  39. Sawada, Y. & Sheetz, M. P. Force transduction by Triton cytoskeletons. J. Cell Biol. 156, 609–615 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006). This study shows that stretching of p130Cas leads to the exposure of tyrosine residues, which can be phosphorylated to affect signalling pathways.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev. Mol. Cell Biol. 11, 633–643 (2010).

    CAS  Article  Google Scholar 

  42. Asparuhova, M. B., Gelman, L. & Chiquet, M. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand. J. Med. Sci. Sports 19, 490–499 (2009).

    CAS  PubMed  Article  Google Scholar 

  43. Olson, E. N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Rev. Mol. Cell Biol. 11, 353–365 (2010).

    CAS  Article  Google Scholar 

  44. Mallion, J. M., Baguet, J. P., Siche, J. P., Tremel, F. & De Gaudemaris, R. Left ventricular hypertrophy and arterial hypertrophy. Adv. Exp. Med. Biol. 432, 123–133 (1997).

    CAS  PubMed  Article  Google Scholar 

  45. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

    CAS  Article  PubMed  Google Scholar 

  46. Zheng, W., Christensen, L. P. & Tomanek, R. J. Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am. J. Physiol. Heart Circ. Physiol. 295, H794–H800 (2008). This study provides evidence that statically and dynamically applied stretches lead to the activation of distinct pathways in stretched endothelial cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Lehoux, S., Esposito, B., Merval, R. & Tedgui, A. Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111, 643–649 (2005).

    CAS  PubMed  Article  Google Scholar 

  48. Hsu, H. J., Lee, C. F. & Kaunas, R. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4, e4853 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Liu, B. et al. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro . Biophys J. 94, 1497–1507 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. Gelfand, B. D., Epstein, F. H. & Blackman, B. R. Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. J. Magn. Reson. Imaging 24, 1386–1392 (2006).

    PubMed  Article  Google Scholar 

  51. Dancu, M. B. & Tarbell, J. M. Large negative stress phase angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells. J. Biomech. Eng. 128, 329–334 (2006).

    PubMed  Article  Google Scholar 

  52. Wehrle-Haller, B. Analysis of integrin dynamics by fluorescence recovery after photobleaching. Methods Mol. Biol. 370, 173–201 (2007).

    CAS  PubMed  Article  Google Scholar 

  53. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  54. Brown, C. M. et al. Probing the integrin–actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119, 5204–5214 (2006).

    CAS  PubMed  Article  Google Scholar 

  55. Maruthamuthu, V., Aratyn-Schaus, Y. & Gardel, M. L. Conserved F-actin dynamics and force transmission at cell adhesions. Curr. Opin. Cell Biol. 22, 583–588 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Liu, Z. et al. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. USA 107, 9944–9949 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell–ECM traction force modulates endogenous tension at cell–cell contacts. Proc. Natl Acad. Sci. USA 108, 4708–4713 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Mège, R. M., Gavard, J. & Lambert, M. Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18, 541–548 (2006).

    PubMed  Article  CAS  Google Scholar 

  59. Ladoux, B. et al. Strength dependence of cadherin-mediated adhesions. Biophys. J. 98, 534–542 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. Nature Cell Biol. 9, 92–98 (2007).

    CAS  PubMed  Article  Google Scholar 

  61. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. le Duc, Q. et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189, 1107–1115 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Evans, E. A. & Calderwood, D. A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  64. Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    CAS  PubMed  Article  Google Scholar 

  65. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    CAS  Article  PubMed  Google Scholar 

  66. Ferrer, J. M. et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105, 9221–9226 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Bruinsma, R. Theory of force regulation by nascent adhesion sites. Biophys. J. 89, 87–94 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008). This study proposes and validates a model describing rigidity sensitive FA dynamics in terms of force-activated protein dissociation.

    ADS  CAS  Article  PubMed  Google Scholar 

  69. Li, Y., Bhimalapuram, P. & Dinner, A. R. Model for how retrograde actin flow regulates adhesion traction stresses. J. Phys. Condens. Matter 22, 194113 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  70. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Schmidt, C. E., Horwitz, A. F., Lauffenburger, D. A. & Sheetz, M. P. Integrin–cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 123, 977–991 (1993).

    CAS  PubMed  Article  Google Scholar 

  72. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). This paper reports a biosensor that measures forces across specific proteins in dynamic FAs and shows that molecular tension across vinculin correlates with FA strengthening.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Miyata, H., Yasuda, R. & Kinosita, K. Jr. Strength and lifetime of the bond between actin and skeletal muscle α-actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290, 83–88 (1996).

    PubMed  Article  Google Scholar 

  74. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009). This study shows that the linkage between α 5 β 1 integrin and fibronectin acts like a catch bond at the single molecule level.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009). This study shows that force and increased extracellular rigidity switch α 5 β 1 integrin between a relaxed and a tensioned state that is required for mechanically induced focal adhesion kinase signalling.

    ADS  CAS  PubMed  Article  Google Scholar 

  76. Guo, B. & Guilford, W. H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. USA 103, 9844–9849 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Hoffman, B. D. & Crocker, J. C. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11, 259–288 (2009).

    CAS  PubMed  Article  Google Scholar 

  78. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Gardel, M. L. et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103, 1762–1767 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Lee, H., Ferrer, J. M., Lang, M. J. & Kamm, R. D. Molecular origin of strain softening in cross-linked F-actin networks. Phys. Rev. E 82, 011919 (2010).

    ADS  Article  CAS  Google Scholar 

  81. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Chen, C. et al. Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PLoS ONE 5, e12035 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Shafrir, Y. & Forgacs, G. Mechanotransduction through the cytoskeleton. Am. J. Physiol. Cell Physiol. 282, C479–C486 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. Mack, P. J., Kaazempur-Mofrad, M. R., Karcher, H., Lee, R. T. & Kamm, R. D. Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am. J. Physiol. Cell Physiol. 287, C954–C962 (2004).

    CAS  PubMed  Article  Google Scholar 

  85. Hu, S. & Wang, N. Control of stress propagation in the cytoplasm by prestress and loading frequency. Mol. Cell. Biomech. 3, 49–60 (2006).

    PubMed  Google Scholar 

  86. Jiang, G., Huang, A. H., Cai, Y., Tanase, M. & Sheetz, M. P. Rigidity sensing at the leading edge through α v β 3 integrins and RPTPa. Biophys. J. 90, 1804–1809 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  87. Smith, M. A. et al. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev. Cell 19, 365–376 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Wojtowicz, A. et al. Zyxin mediation of stretch-induced gene expression in human endothelial cells. Circ. Res. 107, 898–902 (2010).

    CAS  PubMed  Article  Google Scholar 

  89. Chiquet, M., Gelman, L., Lutz, R. & Maier, S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim. Biophys. Acta 1793, 911–920 (2009).

    CAS  PubMed  Article  Google Scholar 

  90. Katsumi, A. et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158, 153–164 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Kanda, K. & Matsuda, T. Behavior of arterial-wall cells cultured on periodically stretched substrates. Cell Transplant. 2, 475–484 (1993).

    CAS  PubMed  Article  Google Scholar 

  92. De, R., Zemel, A. & Safran, S. A. Dynamics of cell orientation. Nature Phys. 3, 655–659 (2007). This theory-based study suggests how cytoskeletal dynamics affect the ability of cells to align to dynamically applied stretches.

    ADS  CAS  Article  Google Scholar 

  93. Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102, 15895–15900 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. Prezhdo, O. V. & Pereverzev, Y. V. Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42, 693–703 (2009).

    CAS  PubMed  Article  Google Scholar 

  95. Haga, J. H., Li, Y. S. & Chien, S. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J. Biomech. 40, 947–960 (2007).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 grant HL075092 from the US Public Health Service to M.A.S. and by a fellowship from the American Heart Association to B.D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffman, B., Grashoff, C. & Schwartz, M. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011). https://doi.org/10.1038/nature10316

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10316

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing