Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central dogma at the single-molecule level in living cells

Abstract

Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence microscopy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event can determine the phenotype of a cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stochastic nature of single-molecule processes.
Figure 2: Central dogma at the single-molecule level.
Figure 3: Methods for imaging single molecules in living cells.
Figure 4: Real-time measurements of gene expression with single-molecule sensitivity.
Figure 5: Phenotype switching due to a single-molecule event.

Similar content being viewed by others

References

  1. Hirschfeld, T. Optical microscopic observation of single small molecules. Appl. Opt. 15, 2965–2966 (1976). This paper presents the first single-molecule fluorescence imaging at room temperature, and the approach, which reduces the detection volume to enhance signal-to-background ratio, is widely used today in vitro and in living cells.

    ADS  CAS  PubMed  Google Scholar 

  2. Shera, E. B., Seitzinger, N. K., Davis, L. M., Keller, R. A. & Soper, S. A. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557 (1990).

    ADS  CAS  Google Scholar 

  3. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    ADS  CAS  PubMed  Google Scholar 

  4. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    ADS  CAS  PubMed  Google Scholar 

  5. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. & Schindler, H. Characterization of photophysics and mobility of single molecules in a fluid lipid-membrane. J. Phys. Chem. 99, 17662–17668 (1995).

    CAS  Google Scholar 

  6. Xie, X. S. & Trautman, J. K. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480 (1998).

    ADS  CAS  PubMed  Google Scholar 

  7. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    ADS  CAS  PubMed  Google Scholar 

  8. Ha, T. et al. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl Acad. Sci. USA 96, 893–898 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998). This article reports real-time observation and statistical analyses of stochastic enzymatic turnover and shows that on a single-molecule basis, k cat is not a constant.

    ADS  CAS  PubMed  Google Scholar 

  10. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    CAS  PubMed  Google Scholar 

  11. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009). This paper reports real-time sequencing of DNA using a single DNA polymerase molecule, a compelling application of single-molecule enzymology in biotechnology.

    ADS  CAS  PubMed  Google Scholar 

  12. Bouche, J. P. Physical map of a 470 × 103 base-pair region flanking the terminus of DNA replication in the Escherichia coli K12 genome. J. Mol. Biol. 154, 1–20 (1982).

    ADS  CAS  PubMed  Google Scholar 

  13. Bremer, H. A stochastic process determines the time at which cell division begins in Escherichia coli . J. Theor. Biol. 118, 351–365 (1986).

    CAS  PubMed  Google Scholar 

  14. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    ADS  CAS  PubMed  Google Scholar 

  15. Blanchard, S. C., Kim, H. D., Gonzalez, R. L. Jr, Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishihama, Y. et al. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9, 102 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010). This article profiles the transcriptome and proteome with single-molecule sensitivity in single cells, and shows that the protein copy-number distribution of most genes can be well fit with gamma distribution.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. & Lia, G. Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys. 37, 417–444 (2008).

    CAS  PubMed  Google Scholar 

  23. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    ADS  CAS  PubMed  Google Scholar 

  24. Andersson, H., Baechi, T., Hoechl, M. & Richter, C. Autofluorescence of living cells. J. Microsc. 191, 1–7 (1998).

    CAS  PubMed  Google Scholar 

  25. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000).

    CAS  PubMed  Google Scholar 

  26. Iino, R., Koyama, I. & Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson, T. Confocal Microscopy (Academic, 1990).

    Google Scholar 

  28. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  CAS  PubMed  Google Scholar 

  29. Sanchez, E. J., Novotny, L., Holtom, G. R. & Xie, X. S. Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation. J. Phys. Chem. A 101, 7019–7023 (1997).

    CAS  Google Scholar 

  30. Fuchs, E., Jaffe, J., Long, R. & Azam, F. Thin laser light sheet microscope for microbial oceanography. Opt. Express 10, 145–154 (2002).

    ADS  PubMed  Google Scholar 

  31. Ritter, J. G., Veith, R., Veenendaal, A., Siebrasse, J. P. & Kubitscheck, U. Light sheet microscopy for single molecule tracking in living tissue. PLoS ONE 5, e11639 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  32. Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli . J. Bacteriol. 181, 197–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, X. S., Yu, J. & Yang, W. Y. Living cells as test tubes. Science 312, 228–230 (2006).

    ADS  CAS  PubMed  Google Scholar 

  34. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006). This article monitors the real-time production of individual proteins by imaging newly synthesized YFP molecules, demonstrating translational bursts from a repressed promoter.

    ADS  CAS  PubMed  Google Scholar 

  35. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007). This article probes specific and nonspecific binding of a transcription factor to DNA, and measures the search time for a transcription factor to reach its target site in a living bacterial cell.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  CAS  PubMed  Google Scholar 

  39. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS  CAS  PubMed  Google Scholar 

  41. Richter, P. H. & Eigen, M. Diffusion controlled reaction rates in spheroidal geometry: application to repressor–operator association and membrane bound enzymes. Biophys. Chem. 2, 255–263 (1974).

    CAS  PubMed  Google Scholar 

  42. Berg, O. G., Winter, R. B. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    CAS  PubMed  Google Scholar 

  43. Riggs, A. D., Bourgeois, S. & Cohn, M. The lac repressor–operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970).

    CAS  PubMed  Google Scholar 

  44. Kabata, H. et al. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262, 1561–1563 (1993).

    ADS  CAS  PubMed  Google Scholar 

  45. Harada, Y. et al. Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys. J. 76, 709–715 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl Acad. Sci. USA 103, 5752–5757 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Graneli, A., Yeykal, C. C., Robertson, R. B. & Greene, E. C. Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proc. Natl Acad. Sci. USA 103, 1221–1226 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tafvizi, A., Huang, F., Fersht, A. R., Mirny, L. A. & van Oijen, A. M. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95, L01–L03 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, J. H. & Larson, R. G. Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules. Nucleic Acids Res. 35, 3848–3858 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schurr, J. M. The one-dimensional diffusion coefficient of proteins absorbed on DNA. Hydrodynamic considerations. Biophys. Chem. 9, 413–414 (1979).

    CAS  PubMed  Google Scholar 

  51. Blainey, P. C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nature Struct. Mol. Biol. 16, 1224–1229 (2009).

    CAS  Google Scholar 

  52. Li, G. W., Berg, O. G. & Elf, J. Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nature Phys. 5, 294–297 (2009).

    ADS  CAS  Google Scholar 

  53. Stanford, N. P., Szczelkun, M. D., Marko, J. F. & Halford, S. E. One- and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J. 19, 6546–6557 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Winter, R. B., Berg, O. G. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977 (1981).

    CAS  PubMed  Google Scholar 

  55. Gowers, D. M. & Halford, S. E. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J. 22, 1410–1418 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonnet, I. et al. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res. 36, 4118–4127 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Porecha, R. H. & Stivers, J. T. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc. Natl Acad. Sci. USA 105, 10791–10796 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005). This article uses MS2–GFP to follow the production of individual mRNA molecules in real time in bacterial cells.

    CAS  PubMed  Google Scholar 

  59. Le, T. T. et al. Real-time RNA profiling within a single bacterium. Proc. Natl Acad. Sci. USA 102, 9160–9164 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    ADS  CAS  PubMed  Google Scholar 

  63. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

    CAS  Google Scholar 

  64. Berg, O. G. A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol. 71, 587–603 (1978).

    CAS  PubMed  Google Scholar 

  65. Rigney, D. R. Stochastic-model of constitutive protein levels in growing and dividing bacterial cells. J. Theor. Biol. 76, 453–480 (1979).

    MathSciNet  CAS  PubMed  Google Scholar 

  66. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi, P. J., Cai, L., Frieda, K. & Xie, X. S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008). This article investigates the triggering mechanism of the lac operon bistable switch and shows that the dissociation of a single lac repressor is responsible for the phenotype switch to the induced state.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods 6, 331–338 (2009).

    CAS  PubMed  Google Scholar 

  69. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). This study develops an approach to image individual mRNA molecules in living cells, using fluorescent protein-fused MS2 proteins that bind to an engineered mRNA sequence.

    CAS  PubMed  Google Scholar 

  70. Beach, D. L., Salmon, E. D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).

    CAS  PubMed  Google Scholar 

  71. Johansson, H. E. et al. A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc. Natl Acad. Sci. USA 95, 9244–9249 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Delbrück, M. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–140 (1940).

    ADS  Google Scholar 

  73. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    ADS  CAS  PubMed  Google Scholar 

  74. Shahrezaei, V. & Swain, P. S. Analytical distributions for stochastic gene expression. Proc. Natl Acad. Sci. USA 105, 17256–17261 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

    ADS  MathSciNet  CAS  Google Scholar 

  76. Paulsson, J. & Ehrenberg, M. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett. 84, 5447–5450 (2000).

    ADS  CAS  PubMed  Google Scholar 

  77. Friedman, N., Cai, L. & Xie, X. S. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006). This article derives gamma distribution of protein copy numbers in a model with burst-like gene expression; the distribution is in agreement with experimental observations in reference 62.

    ADS  PubMed  Google Scholar 

  78. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    ADS  CAS  PubMed  Google Scholar 

  79. Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    ADS  CAS  PubMed  Google Scholar 

  80. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet. 38, 636–643 (2006).

    CAS  PubMed  Google Scholar 

  81. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA 98, 8614–8619 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    ADS  CAS  PubMed  Google Scholar 

  84. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ . Science 280, 585–590 (1998).

    ADS  CAS  PubMed  Google Scholar 

  85. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis . Science 317, 526–529 (2007). This article used single-molecule FISH to show that the noise in the expression of a transcription factor determines whether a Bacillus subtilis cell becomes competent.

    ADS  CAS  PubMed  Google Scholar 

  86. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  87. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli . Nature 427, 737–740 (2004).

    ADS  CAS  PubMed  Google Scholar 

  88. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    CAS  PubMed  Google Scholar 

  90. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    ADS  CAS  PubMed  Google Scholar 

  91. Ptashne, M. A Genetic Switch 3rd edn (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  92. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Cai, J. Xiao, J. Yu, N. Friedman, J. Elf, P. Choi, H. Chen and Y. Taniguchi for their key contributions to the work described, and W. Greenleaf, P. Sims and H. Ge for their helpful comments on this review. This work is supported by the National Institutes of Health Director's Pioneer Award and the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sunney Xie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, GW., Xie, X. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011). https://doi.org/10.1038/nature10315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10315

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing