Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection

This article has been updated


Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts1. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields2,3 and currents4,5,6, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization7. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to8. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlO x interface layers9,10. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors11,12, as well as with the torque induced by the spin Hall effect in the platinum layer13,14. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device schematic and current-induced switching.
Figure 2: Switching efficiency as a function of current amplitude.
Figure 3: Dependence of switching on applied field direction.
Figure 4: Prototype of a reconfigurable ferromagnetic switch.

Change history

  • 10 August 2011

    Text changes were made to the first paragraph and Fig. 4 legend.


  1. 1

    Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999)

    CAS  Article  Google Scholar 

  5. 5

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Moser, K. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–R167 (2002)

    CAS  Article  Google Scholar 

  8. 8

    Batra, S. Hannay, J. D., Zhou, H. & Goldberg, J. S. Investigations of perpendicular write head design for 1 Tb/in2 . IEEE Trans. Magn. 40, 319–325 (2004)

    ADS  Article  Google Scholar 

  9. 9

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–233 (2010)

    ADS  Article  Google Scholar 

  10. 10

    Rodmacq, B., Manchon, A., Ducruet, C., Auffret, S. & Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlO x trilayers. Phys. Rev. B 79, 024423 (2009)

    ADS  Article  Google Scholar 

  11. 11

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Engel, H.-A., Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane electric and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Awschalom, D. & Samarth, N. Spintronics without magnetism. Physics 2, 50 (2009)

    Article  Google Scholar 

  16. 16

    Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Silov, A. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Ganichev, S. D. et al. Electric current-induced spin orientation in quantum well structures. J. Magn. Magn. Mater. 300, 127–131 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Stern, N. P. et al. Current-induced polarization and the spin Hall effect at room temperature. Phys. Rev. Lett. 97, 126603 (2006)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Meier, L. et al. Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nature Phys. 3, 650–654 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008)

    ADS  Article  Google Scholar 

  22. 22

    Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Bychkov, Yu. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984)

    Google Scholar 

  24. 24

    Krupin, O. et al. Rashba effect at magnetic metal surfaces. Phys. Rev. B 71, 201403(R) (2005)

    ADS  Article  Google Scholar 

  25. 25

    Tudosa, I. et al. The ultimate speed of magnetic switching in granular recording media. Nature 428, 831–833 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Campbell, A. & Fert, A. in Ferromagnetic Materials Vol. 3 (ed. Wohlfart, E. P. ) 747–803 (North Holland, 1982)

    Google Scholar 

  27. 27

    Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–488 (2003)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Dieny, B. et al. Spin-transfer effect and its use in spintronic components. Int. J. Nanotechnol. 7, 591–614 (2010)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010)

    ADS  Article  Google Scholar 

Download references


We thank S. O. Valenzuela and S. F. Alvarado for reading the manuscript and for discussions. This work was supported by the European Research Council (StG 203239 NOMAD), the Ministerio de Ciencia y Innovación (ERA-Net EUI2008-03884, MAT2010-15659) and the Agència de Gestió d'Ajuts Universitaris i de Recerca (2009 SGR 695). Samples were patterned at the NANOFAB facility of the Institut Néel (CNRS).

Author information




I.M.M., K.G. and P.G. planned the experiment; I.M.M., G.G., P.-J.Z., M.V.C., S.A., S.B. and B.R. fabricated the samples; I.M.M. and K.G. performed the experiments; and I.M.M., K.G. and P.G. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ioan Mihai Miron or Pietro Gambardella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data (see table of contents), Supplementary Figures 1-10 with legends and additional references. (PDF 1686 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miron, I., Garello, K., Gaudin, G. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing