Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Link between spin fluctuations and electron pairing in copper oxide superconductors

Abstract

Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate1. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram2 and weaker electron correlations3,4 suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La2 − xCe x CuO4. We show that a scattering rate that is linearly dependent on temperature—a key feature of the anomalous normal state properties of the copper oxides—is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors5 strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temperature–doping ( T x ) phase diagram of La2 −  xCexCuO4.
Figure 2: Doping dependence of scattering rates in zero field.
Figure 3: Temperature dependence of normal-state resistivity.

References

  1. 1

    Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Armitage, N. P., Fournier, P. & Greene, R. L. Progress and perspectives on the electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Weber, C., Haule, K. & Kotliar, G. Strength of correlations in electron- and hole-doped cuprates. Nature Phys. 6, 574–578 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Senechal, D. & Tremblay, A.-M. S. Hot spots and pseudogaps for hole- and electron-doped high-temperature superconductors. Phys. Rev. Lett. 92, 126401 (2004)

    ADS  Article  Google Scholar 

  5. 5

    Doiron-Leyraud, N. et al. Correlation between linear resistivity and T c in the Bechgaard salts and the pnictide superconductor Ba(Fe1−x Co x )2As2 . Phys. Rev. B 80, 214531 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Löhneysen, H., v, Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Moriya, T. & Ueda, K. Spin fluctuations and high temperature superconductivity. Adv. Phys. 49, 555–606 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Sachdev, S. & Keimer, B. Quantum criticality. Phys. Today 64, 29–35 (2011)

    Article  Google Scholar 

  9. 9

    Rosch, A. Magnetotransport in nearly antiferromagnetic metals. Phys. Rev. B 62, 4945–4962 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bourbonnais, C. & Sedeki, A. Link between antiferromagnetism and superconductivity probed by nuclear spin relaxation in organic conductors. Phys. Rev. B 80, 085105 (2009)

    ADS  Article  Google Scholar 

  11. 11

    Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Cond. Matter Phys. 1, 51–70 (2010)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Fournier, P. et al. Insulator-metal crossover near optimal doping in Pr2-x Ce x CuO4: Anomalous normal-state low temperature resistivity. Phys. Rev. Lett. 81, 4720–4723 (1998)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Dagan, Y. et al. Evidence for a quantum phase transition in Pr2-x Ce x CuO4-δ . Phys. Rev. Lett. 92, 167001 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Matsui, H. et al. Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd2-x Ce x CuO4 . Phys. Rev. B 75, 224514 (2007)

    ADS  Article  Google Scholar 

  15. 15

    Helm, T. et al. Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2-x Ce x CuO4 revealed by Shubnikov–de Haas oscillations. Phys. Rev. Lett. 103, 157002 (2009)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Sawa, A. et al. Electron-doped superconductor La2-x Ce x CuO4: preparation of thin films and modified doping range for superconductivity. Phys. Rev. B 66, 014531 (2002)

    ADS  Article  Google Scholar 

  17. 17

    Jin, K. et al. Normal-state transport in electron-doped La2-x Ce x CuO4 thin films in magnetic fields up to 40 Tesla. Phys. Rev. B 77, 172503 (2008)

    ADS  Article  Google Scholar 

  18. 18

    Jin, K. et al. Evidence for antiferromagnetic order in La2-x Ce x CuO4 from angular magnetoresistance measurements. Phys. Rev. B 80, 012501 (2009)

    ADS  Article  Google Scholar 

  19. 19

    Jin, K. et al. Low-temperature Hall effect in electron-doped superconducting La2-x CexCuO4 thin films. Phys. Rev. B 78, 174521 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2-x Sr x CuO4 . Science 323, 603–607 (2009)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Daou, R. et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-T c superconductor. Nature Phys. 5, 31–34 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Motoyama, E. M. et al. Spin correlations in the electron-doped high-transition-temperature superconductor Nd2 − x Ce x CuO4 ± δ . Nature 445, 186–189 (2007)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lin, J. & Millis, A. J. Theory of low-temperature Hall effect in electron-doped cuprates. Phys. Rev. B 72, 214506 (2005)

    ADS  Article  Google Scholar 

  24. 24

    Fujita, M. et al. Low-energy spin fluctuations in the ground states of electron-doped Pr1-x LaCe x CuO4+δ cuprate superconductors. Phys. Rev. Lett. 101, 107003 (2008)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Nakamae, S. et al. Electronic ground state of heavily overdoped nonsuperconducting La2-x Sr x CuO4 . Phys. Rev. B 68, 100502 (2003)

    ADS  Article  Google Scholar 

  26. 26

    Kubo, Y., Shimakawa, Y., Manako, T. & Igarashi, H. Transport and magnetic properties of Tl2Ba2CuO6+δ showing a δ-dependent gradual transition from an 85-K superconductor to a nonsuperconducting metal. Phys. Rev. B 43, 7875–7882 (1991)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Scalapino, D. J. The case for d x2y2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Dhokarh, D. D. & Chubukov, A. V. Self-consistent Eliashberg theory, Tc, and the gap function in electron-doped cuprates. Phys. Rev. B 83, 064518 (2011)

    ADS  Article  Google Scholar 

  29. 29

    Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Taillefer for extensive discussions and N. Doiron-Leyraud for some preliminary analysis of our zero-field data. We also appreciate discussions with A. Chubukov, A. Millis and C. Varma. Some experimental help was provided by X. Zhang, P. Bach and G. Droulers. This research was supported by the NSF under DMR-0952716 (J.P. and K.K.) and DMR-0653535 (R.L.G.) and the Maryland Center for Nanophysics and Advanced Materials (K.J. and N.P.B.).

Author information

Affiliations

Authors

Contributions

K.J. prepared and characterized the thin-film samples. K.J., N.P.B., K.K. and J.P. performed the transport measurements and data analysis. N.P.B., J.P. and R.L.G. wrote the manuscript. R.L.G. conceived and directed the project.

Corresponding author

Correspondence to R. L. Greene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Supplementary Figures 1-6 with legends. (PDF 817 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, K., Butch, N., Kirshenbaum, K. et al. Link between spin fluctuations and electron pairing in copper oxide superconductors. Nature 476, 73–75 (2011). https://doi.org/10.1038/nature10308

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing