Sensitivity of coccolithophores to carbonate chemistry and ocean acidification


About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans1, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems2 and particularly to calcifying organisms such as corals3,4, foraminifera5,6,7 and coccolithophores8. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species8,9,10,11. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO32−. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relationships between coccolith mass and carbonate chemistry.
Figure 2: Variation of coccolith mass, species composition and CO 2 concentration over the last 40 kyr.
Figure 3: Physico-chemical and coccolithophore variability along an east–west acidity gradient in the south-east Pacific.

Accession codes

Primary accessions


Data deposits

The GenBank accession numbers are JN098138–JN098158, JN098160 and JN098163–JN098174; their correspondence is given in the online Supplementary Information.


  1. 1

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S. & Buddemeier, R. W. Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet. Change 18, 37–46 (1998)

    ADS  Article  Google Scholar 

  4. 4

    Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2 . Science 297, 833–836 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geosci. 2, 276–280 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    de Moel, H. et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6, 1917–1925 (2009)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Nature 407, 364–367 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Langer, G. M. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. 7, Q09006 (2006)

    ADS  Article  Google Scholar 

  11. 11

    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosci. Discuss. 6, 4361–4383 (2009)

    ADS  Article  Google Scholar 

  12. 12

    de Vargas, C., Aubry, M. P., Probert, I. & Young, J. in Evolution of Aquatic Photoautotrophs (eds Falkowski, P. G. & Knoll, A. H.) 251–285 (Academic, 2007)

    Google Scholar 

  13. 13

    Bollmann, J., Henderiks, J. & Brabec, B. Global calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment. Paleoceanogr. 17 10.1029/2001PA000742 (2002)

  14. 14

    Lewis, E. & Wallace, D. W. R. Program developed for CO2 system calculations. Carbon Dioxide Information and Analysis Center Report, ORNL/CDIAC-105 (1998)

  15. 15

    Hönisch, B. & Hemming, N. G. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236, 305–314 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification–photosynthesis interactions. Phycologia 40, 503–529 (2001)

    Article  Google Scholar 

  17. 17

    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. II 54, 521–537 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98 (2008)

    CAS  Article  Google Scholar 

  19. 19

    Bollmann, J. & Herrle, J. O. Morphological variation of Emiliania huxleyi and sea surface salinity. Earth Planet. Sci. Lett. 255, 273–288 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Colmenero-Hidalgo, E., Flores, J. A. & Sierro, F. J. Biometry of Emiliania huxleyi and its biostratigraphic significance in the Eastern North Atlantic Ocean and Western Mediterranean Sea in the last 20 000 years. Mar. Micropaleontol. 46, 247–263 (2002)

    ADS  Article  Google Scholar 

  21. 21

    Anderson, D. M. & Archer, D. Glacial interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Buitenhuis, E. T., de Baar, H. J. W. & Veldhuis, M. J. W. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. J. Phycol. 35, 949–959 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Berry, L., Taylor, A. R., Lucken, U., Ryan, K. P. & Brownlee, C. Calcification and inorganic carbon acquisition in coccolithophores. Funct. Plant Biol. 29, 289–299 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U. & Brownlee, C. Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol. J. 27, 585–595 (2010)

    CAS  Article  Google Scholar 

  25. 25

    Zondervan, I., Rost, B. & Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J. Exp. Mar. Biol. Ecol. 272, 55–70 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Young, J. et al. A guide to extant coccolithophore taxonomy. J. Nannoplankton Res. 1 (Special Issue). 1–132 (2003)

    Google Scholar 

  27. 27

    Hagino, K. et al. New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyseae) from the COX1b-ATP4 genes. J. Phycol. (in the press)

  28. 28

    Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J. & Wilson, P. A. Nannoplankton extinction and origination across the Paleocene–Eocene Thermal Maximum. Science 314, 1770–1773 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Article  Google Scholar 

Download references


We thank the crew from Puerto Deseado, Atalante, Suroit and Marion-Dufresne, and D. Vaulot, L. Garczarek, M.-A. Sicre and H. Claustre for their help in collecting material for this work. The long-term OISO observational programme is supported by INSU (Institut National des Sciences de l’Univers), IPSL (Institut Pierre-Simon Laplace) and IPEV (Institut Paul-Emile Victor). We thank F. C. Bassinot for help in estimating palaeosalinities. The IMAGES programme is acknowledged for collection and curation of the cores. This work was funded by the ‘Agence National de la Recherche’ project PALEO-CTD (grant ANR-06-JCJC-0142), by the European Research Council under grant agreement 205150, by the European Funding Agencies from the ERA-net program Biodiversa, under the Biomarks project, and by the European Community’s Seventh Framework Program EPOCA (European Project on Ocean Acidification) under grant agreement 211384.

Author information




On the basis of an original idea from L.B., the concept of this paper was developed in discussion between all authors. L.B., N.B., P.C. and M.G. conducted coccolith measurements, D.R.-P., N.M. and C.G. conducted modern-ocean chemistry measurements, L.B. and T.d.G.-T. computed past ocean chemistry, E.M.B., I.P. and C.d.V. performed genetic analyses, B.R., R.E.M.R. and I.P. conceptualized the physiological interpretation, L.B., I.P., D.R.-P., C.d.V. and R.E.M.R. interpreted the relationships between calcification and environment.

Corresponding author

Correspondence to L. Beaufort.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-7 with legends, Supplementary Tables 1-4 and additional references. (PDF 7250 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beaufort, L., Probert, I., de Garidel-Thoron, T. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.