Abstract
Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils1,2. Fire has been largely absent from most of this biome since the early Holocene epoch3, but its frequency and extent are increasing, probably in response to climate warming4. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska’s Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m−2 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra6. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century7. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening8 and influencing the net C balance of the tundra biome.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Dispersal and fire limit Arctic shrub expansion
Nature Communications Open Access 04 July 2022
-
Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway
Scientific Reports Open Access 18 March 2022
-
Microbial contribution to post-fire tundra ecosystem recovery over the 21st century
Communications Earth & Environment Open Access 11 February 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Ping, C. L. et al. High stocks of soil organic carbon in the North American Arctic region. Nature Geosci. 1, 615–619 (2008)
Harden, J. W., Sundquist, E. T., Stallard, R. F. & Mark, R. K. Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258, 1921–1924 (1992)
Higuera, P., Brubaker, L. B., Anderson, P. M., Brown, T. A. & Kennedy, A. T. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008)
Hu, F. S. et al. Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J. Geophys. Res. Biogeosci. 115, G04002 (2010)
Jones, B. M. et al. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk river tundra fire, North Slope, Alaska. Arct. Antarct. Alp. Res. 41, 309–316 (2009)
Oechel, W. C. et al. A scaling approach for quantifying the net CO2 flux of the Kuparuk river basin, Alaska. Glob. Change Biol. 6, 160–173 (2000)
McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009)
Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005)
Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58, 701–714 (2008)
The Intergovernmental Panel on Climate Change (IPCC) Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (Cambridge Univ. Press, 2007)
Field, C. B., Lobell, D. B., Peters, H. A. & Chiariello, N. R. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Environ. Resour. 32, 1–29 (2007)
Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33 (13). L09703 (2006)
Zimov, S. A. et al. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2 . Science 284, 1973–1976 (1999)
Chapin, F. S., III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005)
Balshi, M. S. et al. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob. Change Biol. 15, 1491–1510 (2009)
Krawchuck, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, 1–12 (2009)
Boby, L. A., Schuur, E. A. G., Mack, M. C., Johnstone, J. F. & Verbyla, D. L. Quantifying fire severity, carbon and nitrogen emissions in Alaska’s boreal forests. Ecol. Appl. 20, 1633–1647 (2010)
Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geosci. 4, 27–31 (2011)
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023. 1–11 (2009)
Chapin, F. S., III et al. Arctic and boreal ecosystems of western North America as components of the climate system. Glob. Change Biol. 6, 211–223 (2000)
Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006)
Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009)
Trumbore, S. E. & Harden, J. W. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J. Geophys. Res. 102, 28817–28830 (1997)
Schell, D. & Barnett, B. Peat Cores from the Toolik Lake and Imnaviate Creek Region 〈http://metacat.lternet.edu/das/lter/advancedsearch.jsp?site=ARC〉 (12 files named 89scpt01.txt to 89scpt12.txt) (US Long Term Ecological Research Database, 1989)
Shaver, G. R. & Chapin, F. S., III Production:biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol. Monogr. 61, 1–31 (1991)
Hobara, S. et al. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct. Antarct. Alp. Res. 38, 363–372 (2006)
Ping, C. L., Bockheim, J. G., Kimble, J. M., Michaelson, G. J. & Walker, D. A. Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. J. Geophys. Res. Atmos. 103 (D22). 28917–28928 (1998)
Luo, Y. Q. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007)
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S., III Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004)
Sturm, M., Racine, C. & Tape, K. Climate change—increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001)
Rocha, A. V. & Shaver, G. R. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agric. For. Meteorol. 149, 1560–1563 (2009)
Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005)
Acknowledgements
We thank J. Ahgook Jr, L. Boby, M. Cahill, E. Miya, E. Miller, J. Oyler, C. Roberts, E. Suronen, C. Wachs, C. Wasykowski and D. Yokel for their contributions to fieldwork, C. Apodaca, G. Blohm, E. Brown, G. Crummer and D. Nossov for their contributions to laboratory work and sample analyses, H. Alexander for contributing to data analyses, and P. Ray for insights into tussock morphology. This research was supported by the US NSF Division of Environmental Biology, the Division of Biological Infrastructure and Office of Polar Programs, by the US National Center for Ecological Analysis and Synthesis and by the US Bureau of Land Management Alaska Fire Service and Arctic Field Office.
Author information
Authors and Affiliations
Contributions
M.C.M., M.S.B.-H., T.N.H., R.R.J. and D.L.V. designed the study with input from E.A.G.S. and G.R.S. M.C.M., T.N.H., R.R.J. and M.S.B.-H. conducted soil and vegetation sampling fieldwork and M.C.M., E.A.G.S. and D.L.V. analysed samples and data. M.C.M. wrote the manuscript with input from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
The data described in this study is publicly available in the Arctic Long Term Ecological Research data archive (http://ecosystems.mbl.edu/arc/burn/data.html).
Supplementary information
Supplementary Information
This file contains Supplementary Methods, additional references, Supplementary Figures 1-6 with legends and Supplementary Tables 1-3. (PDF 3757 kb)
PowerPoint slides
Rights and permissions
About this article
Cite this article
Mack, M., Bret-Harte, M., Hollingsworth, T. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011). https://doi.org/10.1038/nature10283
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10283
This article is cited by
-
Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway
Scientific Reports (2022)
-
Microbial contribution to post-fire tundra ecosystem recovery over the 21st century
Communications Earth & Environment (2022)
-
Dispersal and fire limit Arctic shrub expansion
Nature Communications (2022)
-
Wildfires did not ignite boreal forest range expansion into tundra ecosystems in subarctic Yukon, Canada
Plant Ecology (2022)
-
Future increases in Arctic lightning and fire risk for permafrost carbon
Nature Climate Change (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.