14-3-3 proteins act as intracellular receptors for rice Hd3a florigen


‘Florigen’ was proposed 75 years ago1 to be synthesized in the leaf and transported to the shoot apex, where it induces flowering. Only recently have genetic and biochemical studies established that florigen is encoded by FLOWERING LOCUS T (FT), a gene that is universally conserved in higher plants2,3,4. Nonetheless, the exact function of florigen during floral induction remains poorly understood and receptors for florigen have not been identified. Here we show that the rice FT homologue Hd3a5 interacts with 14-3-3 proteins in the apical cells of shoots, yielding a complex that translocates to the nucleus and binds to the Oryza sativa (Os)FD1 transcription factor, a rice homologue of Arabidopsis thaliana FD. The resultant ternary ‘florigen activation complex’ (FAC) induces transcription of OsMADS15, a homologue of A. thaliana APETALA1 (AP1), which leads to flowering. We have determined the 2.4 Å crystal structure of rice FAC, which provides a mechanistic basis for florigen function in flowering. Our results indicate that 14-3-3 proteins act as intracellular receptors for florigen in shoot apical cells, and offer new approaches to manipulate flowering in various crops and trees.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Interactions among Hd3a, GF14 and OsFD1.
Figure 2: Structure of the florigen activation complex.
Figure 3: The Hd3a–GF14b complex enters the nucleus to interact with OsFD1.
Figure 4: 14-3-3 interaction is required for OsMADS15 activation by Hd3a and OsFD1.

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Data deposits

The atomic coordinates, structure factors and NMR data have been deposited in the Protein Data Bank (accession number 3AXY) and Biological Magnetic Resonance Bank (accession number 11442).

Change history

  • 08 August 2011

    The Supplementary Figures and Tables were missing from the original file posted online and were added on 8 August 2011.


  1. 1

    Chailakhyan, M. H. On the hormonal theory of plant development. C. R. Acad. Sci. U.R.S.S. 12, 443–447 (1936)

    Google Scholar 

  2. 2

    Zeevaart, J. A. Leaf-produced floral signals. Curr. Opin. Plant Biol. 11, 541–547 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Kobayashi, Y. & Weigel, D. Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371–2384 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Turck, F., Fornara, F. & Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008)

    CAS  Article  Google Scholar 

  5. 5

    Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S. & Shimamoto, K. Hd3a protein is a mobile flowering signal in rice. Science 316, 1033–1036 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wigge, P. A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis . Science 309, 1056–1059 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Komiya, R., Yokoi, S. & Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443–3450 (2009)

    CAS  Article  Google Scholar 

  9. 9

    Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. & Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 135, 767–774 (2008)

    CAS  Article  Google Scholar 

  10. 10

    Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Purwestri, Y. A., Ogaki, Y., Tamaki, S., Tsuji, H. & Shimamoto, K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol. 50, 429–438 (2009)

    CAS  Article  Google Scholar 

  12. 12

    Pnueli, L. et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13, 2687–2702 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Lifschitz, E. et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl Acad. Sci. USA 103, 6398–6403 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Wilker, E. W., Grant, R. A., Artim, S. C. & Yaffe, M. B. A structural basis for 14-3-3σ functional specificity. J. Biol. Chem. 280, 18891–18898 (2005)

    CAS  Article  Google Scholar 

  16. 16

    Ahn, J. H. et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605–614 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Kwaaitaal, M., Keinath, N. F., Pajonk, S., Biskup, C. & Panstruga, R. Combined bimolecular fluorescence complementation and Förster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol. 152, 1135–1147 (2010)

    CAS  Article  Google Scholar 

  18. 18

    Shyu, Y. J., Suarez, C. D. & Hu, C. D. Visualization of AP-1–NF-κβ ternary complexes in living cells by using a BiFC-based FRET. Proc. Natl Acad. Sci. USA 105, 151–156 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Muszynski, M. G. et al. delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol. 142, 1523–1536 (2006)

    CAS  Article  Google Scholar 

  20. 20

    Bohlenius, H. et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312, 1040–1043 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Shalit, A. et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl Acad. Sci. USA 106, 8392–8397 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Krieger, U., Lippman, Z. B. & Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genet. 42, 459–463 (2010)

    CAS  Article  Google Scholar 

  23. 23

    Hayashi, K. & Kojima, C. pCold-GST vector: a novel cold-shock vector containing GST tag for soluble protein production. Protein Expr. Purif. 62, 120–127 (2008)

    Article  Google Scholar 

  24. 24

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    CAS  Article  Google Scholar 

  25. 25

    McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  Google Scholar 

  26. 26

    Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004)

    Article  Google Scholar 

  27. 27

    Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  28. 28

    Schumacher, M. A., Goodman, R. H. & Brennan, R. G. The structure of a CREB bZIP·Somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J. Biol. Chem. 275, 35242–35247 (2000)

    CAS  Article  Google Scholar 

  29. 29

    Kawano, Y. et al. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity. Cell Host Microbe 7, 362–375 (2010)

    CAS  Article  Google Scholar 

  30. 30

    Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Okano, Y., Miki, D. & Shimamoto, K. Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice. Plant J. 53, 65–77 (2008)

    CAS  Article  Google Scholar 

  32. 32

    Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994)

    CAS  Article  Google Scholar 

  33. 33

    Kyozuka, J. & Shimamoto, K. Plant Tissue Culture Manual (ed. Lindsey, K. ) Ch. 1 1–17 (Kluwer Academic, 1991)

    Google Scholar 

  34. 34

    Hollenberg, S. M., Sternglanz, R., Cheng, P. F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995)

    CAS  Article  Google Scholar 

  35. 35

    Bartel, P. L., Chien, C., Sternglanz, R. & Fields, S. Using the two-hybrid system to detect protein–protein interactions. In Cellular Interactions in Development: A Practical Approach (ed. Hartley, D. ) 153–179 (Oxford Univ. Press, 1993)

    Google Scholar 

  36. 36

    Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007)

    CAS  Article  Google Scholar 

  37. 37

    Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    CAS  Article  Google Scholar 

  38. 38

    The Rowland NMR Toolkit . 〈http://rnmrtk.uchc.edu/rnmrtk/RNMRTK.html〉 (2008)

  39. 39

    Goddard, D. T. & Kneller, G. SPARKY 3. (Univ. California, 2004)

    Google Scholar 

  40. 40

    Rovnyak, D. et al. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J. Magn. Reson. 170, 15–21 (2004)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Bodenhausen, G. & Ruben, D. J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  43. 43

    Ottmann, C. et al. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 (2007)

    CAS  Article  Google Scholar 

  44. 44

    Lovell, S. C. et al. Structure validation by Cα geometry: Φ, ψ and Cβ deviation. Proteins 50, 437–450 (2003)

    CAS  Article  Google Scholar 

  45. 45

    DeLano, D. L. The PyMOL Molecular Graphics System. 〈http://www.pymol.org〉 (2002)

  46. 46

    Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991)

    ADS  CAS  Article  Google Scholar 

Download references


We thank Y. Takahashi for the anti-14-3-3 antibody and S. Takayama for the BiFC vectors. We are grateful to I. Smith for critical reading of the manuscript. We also thank N. Inada for FRET measurement; Y. Nishio, Y. Ohno, E. Kawano and M. Kanda for technical assistance; Y. Tamaki, Y. Konomi and J. Naritomi for rice transformation; M. Yoneyama, H. Kinoshita and A. Yasuba for sample preparation; J. Tsukamoto for mass spectroscopy analysis; H. Fukada for ITC measurement; K. Takeshita and Y. Hara for crystallization; and members of the Laboratory of Plant Molecular Genetics and the Laboratory of Biophysics at Nara Institute of Science and Technology (NAIST) for discussions. We thank beamline staff of BL41XU and BL44XU at SPring-8 and Photon Factory for data collection. We also thank Academia Sinica and National Synchrotron Radiation Research Center (Taiwan) for use of the MX225-HE detector at BL44XU. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through the Target Proteins Research Program, by the Global COE Program at NAIST, by Grants-in-Aid for Scientific Research to I.O., C.K. and K.S., by Grants-in-Aid for Scientific Research on Priority Areas to K.S. and by the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry from Bio-oriented Research Advancement Institution (BRAIN) to H.T.

Author information




K.T., I.O., H.T., K.F., K.H., T.Y., M.Y., C.N., Y.A.P., S.T., Y.O. and C.S. performed experiments; I.O. conceived the idea that 14-3-3 mediates the interaction between Hd3a and OsFD1; K.T., I.O., H.T., A.N., C.K. and K.S. analysed data; and K.T., I.O., H.T., C.K. and K.S. wrote the paper. C.K. and K.S. contributed equally to this work.

Corresponding authors

Correspondence to Chojiro Kojima or Ko Shimamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1 to 7, additional references, Supplementary Figures 1 to 30 with legends and Supplementary Tables 1 to 6. The Supplementary Figures and Tables were missing from the original file posted online and were added on 8 August 2011. (PDF 20553 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taoka, K., Ohki, I., Tsuji, H. et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332–335 (2011). https://doi.org/10.1038/nature10272

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing