Sideband cooling of micromechanical motion to the quantum ground state


The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions1 and generating new states of matter with Bose–Einstein condensates2. Analogous cooling techniques3,4 can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion5,6,7,8,9,10,11,12,13,14,15. However, entering the quantum regime—in which a system has less than a single quantum of motion—has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement3 within (5.1 ± 0.4)h/2π, where h is Planck’s constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons16. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion17,18, possibly even testing quantum theory itself in the unexplored region of larger size and mass19. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains20.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic description of the experiment.
Figure 2: Displacement sensitivity in the presence of dynamical back-action.
Figure 3: Sideband cooling the mechanical mode to the ground state.


  1. 1

    Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992)

    Google Scholar 

  4. 4

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Braginsky, V. B., Manukin, A. B. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 31, 829–830 (1970)

    ADS  Google Scholar 

  6. 6

    Blair, D. G. et al. High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908–1911 (1995)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cuthbertson, B. D., Tobar, M. E., Ivanov, E. N. & Blair, D. G. Parametric back-action effects in a high-Q cryogenic sapphire transducer. Rev. Sci. Instrum. 67, 2435–2442 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485–488 (2009)

    ADS  Article  Google Scholar 

  11. 11

    Park, Y.-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489–493 (2009)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett. 103, 103601 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Rivière, R. et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Preprint at 〈〉 (2010)

  16. 16

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong coupling regime. Nature 471, 204–208 (2011)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bose, S., Jacobs, K. & Knight, P. L. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175–4186 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Mancini, S., Man'ko, V. I. & Tombesi, P. Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A 55, 3042–3050 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

  21. 21

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Article  Google Scholar 

  23. 23

    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093502 (2010)

    ADS  Article  Google Scholar 

  26. 26

    Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008)

    ADS  Article  Google Scholar 

  27. 27

    Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotechnol. 4, 820–823 (2009)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    ADS  Article  Google Scholar 

  30. 30

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)

    ADS  CAS  Article  Google Scholar 

Download references


We thank A. W. Sanders for taking the micrograph in Fig. 1 and the JILA instrument shop for fabrication and design of the cavity filter. This work was supported by NIST and the DARPA QuASAR programme. T.D. acknowledges support from the Deutsche Forschungsgemeinschft (DFG). This Letter is a contribution of the US government and not subject to copyright.

Author information




J.D.T. and R.W.S. conceived the device. J.D.T. designed the circuit. J.D.T. and D.L. fabricated the devices. J.D.T. and T.D. set up the experiment, performed the measurements and analysed the data. J.D.T., T.D., R.W.S. and K.W.L. discussed the results and wrote the manuscript. All authors provided experimental support and commented on the manuscript.

Corresponding author

Correspondence to J. D. Teufel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary figures 1-4 with legends, Supplementary Table 1 and additional references. (PDF 312 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teufel, J., Donner, T., Li, D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing