Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Type VI secretion delivers bacteriolytic effectors to target cells

Abstract

Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tse1 and Tse3 are lytic proteins belonging to amidase and muramidase enzyme families.
Figure 2: Tse1 and Tse3 are not required for Tse2 export or transfer to recipient cells via the T6S apparatus.
Figure 3: Tsi1 and Tsi3 provide immunity to cognate toxins.
Figure 4: Tse1 and Tse3 delivered to the periplasm provide a fitness advantage to donor cells.
Figure 5: Proposed mechanism of T6S-dependent delivery of effector proteins.

Similar content being viewed by others

References

  1. Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010)

    Article  CAS  Google Scholar 

  2. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol. 8, 15–25 (2010)

    Article  CAS  Google Scholar 

  3. Gründling, A. & Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus . J. Bacteriol. 188, 2463–2472 (2006)

    Article  Google Scholar 

  4. Vollmer, W., Pilsl, H., Hantke, K., Höltje, J. V. & Braun, V. Pesticin displays muramidase activity. J. Bacteriol. 179, 1580–1583 (1997)

    Article  CAS  Google Scholar 

  5. Brötz, H., Bierbaum, G., Markus, A., Molitor, E. & Sahl, H. G. Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Chemother. 39, 714–719 (1995)

    Article  Google Scholar 

  6. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002)

    Article  CAS  Google Scholar 

  7. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010)

    Article  CAS  Google Scholar 

  8. Schwarz, S., Hood, R. D. & Mougous, J. D. What is type VI secretion doing in all those bugs? Trends Microbiol. 18, 531–537 (2010)

    Article  CAS  Google Scholar 

  9. Cascales, E. The type VI secretion toolkit. EMBO Rep. 9, 735–741 (2008)

    Article  CAS  Google Scholar 

  10. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009)

    Article  Google Scholar 

  11. Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y. & Mougous, J. D. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc. Natl Acad. Sci. USA 105, 3733–3738 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Kanamaru, S. Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc. Natl Acad. Sci. USA 106, 4067–4068 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005)

    Article  CAS  Google Scholar 

  16. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)

    Article  CAS  Google Scholar 

  17. Anantharaman, V. & Aravind, L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 4, R11 (2003)

    Article  Google Scholar 

  18. Scheurwater, E., Reid, C. W. & Clarke, A. J. Lytic transglycosylases: bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 40, 586–591 (2008)

    Article  CAS  Google Scholar 

  19. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008)

    Article  CAS  Google Scholar 

  20. Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nature Rev. Microbiol. 3, 371–382 (2005)

    Article  CAS  Google Scholar 

  21. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004)

    Article  CAS  Google Scholar 

  22. Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6, (2010)

  23. Mortensen, J. E., Fisher, M. C. & LiPuma, J. J. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect. Control Hosp. Epidemiol. 16, 30–32 (1995)

    Article  CAS  Google Scholar 

  24. Nelson, K. E. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808 (2002)

    Article  CAS  Google Scholar 

  25. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Rakhuba, D. V., Kolomiets, E. I., Dey, E. S. & Novik, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 59, 145–155 (2010)

    CAS  PubMed  Google Scholar 

  27. Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010)

    Article  CAS  Google Scholar 

  28. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)

    Article  CAS  Google Scholar 

  29. Brook, I. Bacterial interference. Crit. Rev. Microbiol. 25, 155–172 (1999)

    Article  CAS  Google Scholar 

  30. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Reid, G., Howard, J. & Gan, B. S. Can bacterial interference prevent infection? Trends Microbiol. 9, 424–428 (2001)

    Article  CAS  Google Scholar 

  32. Gjødsbøl, K. et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int. Wound J. 3, 225–231 (2006)

    Article  Google Scholar 

  33. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000)

    Article  ADS  CAS  Google Scholar 

  34. Bui, N. K. et al. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J. Bacteriol. 191, 494–505 (2009)

    Article  CAS  Google Scholar 

  35. Lei, S. P., Lin, H. C., Wang, S. S., Callaway, J. & Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383 (1987)

    Article  CAS  Google Scholar 

  36. Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev. Cell 7, 745–754 (2004)

    Article  CAS  Google Scholar 

  37. Imperi, F. et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics 9, 1901–1915 (2009)

    Article  CAS  Google Scholar 

  38. Cardona, S. T. & Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia . Plasmid 54, 219–228 (2005)

    Article  CAS  Google Scholar 

  39. Hsu, F., Schwarz, S. & Mougous, J. D. TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa . Mol. Microbiol. 72, 1111–1125 (2009)

    Article  CAS  Google Scholar 

  40. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa . Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005)

    Article  ADS  CAS  Google Scholar 

  41. Horton, R. M. et al. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279 (1993)

    Article  CAS  Google Scholar 

  42. Wood, P. M. Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett. 92, 214–218 (1978)

    Article  CAS  Google Scholar 

  43. Liu, J. & Walsh, C. T. Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl Acad. Sci. USA 87, 4028–4032 (1990)

    Article  ADS  CAS  Google Scholar 

  44. Mougous, J. D. et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nature Struct. Mol. Biol. 11, 721–729 (2004)

    Article  CAS  Google Scholar 

  45. Armougom, F. et al. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006)

    Article  CAS  Google Scholar 

  46. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010)

    Article  CAS  Google Scholar 

  47. Glauner, B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172, 451–464 (1988)

    Article  CAS  Google Scholar 

  48. Watt, S. R. & Clarke, A. J. Role of autolysins in the EDTA-induced lysis of Pseudomonas aeruginosa . FEMS Microbiol. Lett. 124, 113–119 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Singh, E. Nester, H. Kulasekara, N. Salama, E. P. Greenberg, L. Ramakrishnan and members of the Mougous laboratory for discussions and critical reading of the manuscript, the Harwood laboratory for use of their microscope, and J. Gray of the Pinnacle Laboratory of Newcastle University for MS analysis. This work was supported by the National Institutes of Health (J.D.M.; RO1 AI080609) and the European Commission within the DIVINOCELL programme (W.V.). A.B.R was supported by a Graduate Research Fellowship from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.B.R., R.D.H., N.K.B, M.L., W.V. and J.DM. conceived and designed experiments. A.B.R., R.D.H., N.K.B. and J.D.M conducted experiments. A.B.R., R.D.H., W.V. and J.D.M. wrote the paper.

Corresponding author

Correspondence to Joseph D. Mougous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with legends, Supplementary Tables 1-2 and additional references. (PDF 1614 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A., Hood, R., Bui, N. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011). https://doi.org/10.1038/nature10244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10244

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing