CORRECTIONS & AMENDMENTS ## **ADDENDUM** doi:10.1038/nature10219 ## A strong ferroelectric ferromagnet created by means of spin-lattice coupling June Hyuk Lee, Lei Fang, Eftihia Vlahos, Xianglin Ke, Young Woo Jung, Lena Fitting Kourkoutis, Jong-Woo Kim, Philip J. Ryan, Tassilo Heeg, Martin Roeckerath, Veronica Goian, Margitta Bernhagen, Reinhard Uecker, P. Chris Hammel, Karin M. Rabe, Stanislav Kamba, Jürgen Schubert, John W. Freeland, David A. Muller, Craig J. Fennie, Peter Schiffer, Venkatraman Gopalan, Ezekiel Johnston-Halperin & Darrell G. Schlom Nature 466, 954-958 (2010) This Letter determined that EuTiO₃, when appropriately strained, becomes a strong ferroelectric ferromagnet, in agreement with prediction. Strong ferroelectrics are proper ferroelectrics, having polarization as their order parameter, with high paraelectric-to-ferroelectric transition temperatures (T_c). Such ferroelectrics are manifested by a high T_c and a high peak at T_c in the dielectric constant versus temperature behaviour, signifying that ferroelectricity is driven by the soft mode, which is indicative of proper ferroelectricity. Our measurements of strained EuTiO₃ demonstrate both of these characteristics (shown in Fig. 3 of our Letter), and led us to conclude that strained EuTiO₃ is a strong ferroelectric. In contrast, all well-established prior single-phase ferroelectric ferromagnets are improper or pseudoproper ferroelectrics (that is, with weak ferroelectricity resulting in minuscule P_s). We did not present P_s values in our Letter. Second harmonic generation measurements do not provide quantitative values of Ps and attempts to determine P_s via pyroelectric measurements (Yan, L., Li, J. F. & Viehland, D., personal communication)1 resulted in unphysically high values, presumably owing to electrical leakage. Nonetheless, the magnitude of the P_s of our strained EuTiO₃ films can be estimated as follows. In their classic work, Abrahams, Kurtz, and Jamieson¹ established a correlation between P_s and T_c for displacive ferroelectrics. By studying numerous displacive ferroelectrics they found¹ $$T_c = (2.00 \pm 0.09) \times 10^4 (\Delta z)^2$$ (equation (1) of ref. 1) and $$P_s = (258 \pm 9)\Delta z$$ (equation (5) of ref. 5) where T_c is the paraelectric-to-ferroelectric transition temperature in K, Δz is the atomic displacement of the 'homopolar' metal atom in Å, and P_s is the spontaneous polarization of the ferroelectric in μ C cm⁻². Combining these equations to eliminate Δz allows P_s to be estimated from T_c in displacive ferroelectrics. The huge anomaly of the soft optical phonon near T_c that we observe (Supplementary Fig. 1 of our Letter) shows that strained EuTiO₃ is a displacive ferroelectric, making the aforementioned correlation applicable. Plugging in our measured value of T_c (Fig. 3 in our Letter) yields $P_s = 29 \pm 2 \,\mu$ C cm⁻² for our strained EuTiO₃ films from this established correlation. This rough estimate is consistent with our first-principles theoretical predictions— $P_s = 21 \,\mu$ C cm⁻² for EuTiO₃ under +1.1% biaxial tension, corresponding to the strain of our commensurate EuTiO₃ films grown on (110) DyScO₃. Thus, the data in our Letter shows that appropriately strained EuTiO₃ is a strong ferroelectric ferromagnet. Abrahams, S. C., Kurtz, S. K. & Jamieson, P. B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. *Phys. Rev.* 172, 551–553 (1968).