Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A giant thunderstorm on Saturn



Lightning discharges in Saturn’s atmosphere emit radio waves1 with intensities about 10,000 times stronger than those of their terrestrial counterparts2. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months2. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south3,4,5 (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres—comparable in size to a ‘Great White Spot’6,7—about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn’s total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons7, given that Saturn experienced vernal equinox in August 2009.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-frequency spectrogram of the SED episode on 12 December 2010.
Figure 2: Saturn’s lightning activity and Cassini’s distance to Saturn as a function of time for December 2010.
Figure 3: Images of Saturn with the storm.
Figure 4: False-colour views showing the height of the storm clouds.

Similar content being viewed by others


  1. Warwick, J. W. et al. Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212, 239–243 (1981)

    Article  ADS  CAS  Google Scholar 

  2. Fischer, G. et al. Atmospheric electricity at Saturn. Space Sci. Rev. 137, 271–285 (2008)

    Article  ADS  Google Scholar 

  3. Porco, C. C. et al. Cassini imaging science: initial results on Saturn’s atmosphere. Science 307, 1243–1247 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Dyudina, U. A. et al. Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 190, 545–555 (2007)

    Article  ADS  Google Scholar 

  5. Fischer, G. et al. Analysis of a giant lightning storm on Saturn. Icarus 190, 528–544 (2007)

    Article  ADS  Google Scholar 

  6. Sánchez-Lavega, A. Motions in Saturn’s atmosphere: observations before Voyager encounters. Icarus 49, 1–16 (1982)

    Article  ADS  Google Scholar 

  7. Sánchez-Lavega, A. et al. Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature doi:10.1038/nature10203 (this issue).

  8. Gurnett, D. A. et al. The Cassini Radio and Plasma Wave Science investigation. Space Sci. Rev. 114, 395–463 (2004)

    Article  ADS  Google Scholar 

  9. Porco, C. C. et al. Cassini Imaging Science: instrument characteristics and anticipated scientific investigations at Saturn. Space Sci. Rev. 115, 363–497 (2004)

    Article  ADS  Google Scholar 

  10. Kaiser, M. L., Desch, M. D. & Connerney, J. E. P. Saturn’s ionosphere: inferred electron densities. J. Geophys. Res. 89, 2371–2376 (1984)

    Article  ADS  Google Scholar 

  11. Fischer, G., Gurnett, D. A., Zarka, P., Moore, L. & Dyudina, U. A. Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning. J. Geophys. Res. 116 A04315 10.1029/2010JA016187 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Moore, L. et al. Cassini radio occultations of Saturn’s ionosphere: model comparisons using a constant water flux. Geophys. Res. Lett. 33 L22202 10.1029/2006GL027375 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Connerney, J. E. P. & Waite, J. H. New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984)

    Article  ADS  CAS  Google Scholar 

  14. Fischer, G., Gurnett, D. A., Lecacheux, A., Macher, W. & Kurth, W. S. Polarization measurements of Saturn electrostatic discharges with Cassini/RPWS below a frequency of 2 MHz. J. Geophys. Res. 112 A12308 10.1029/2007JA012592 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Ingersoll, A. P., Beebe, R. F., Conrath, J. & Hunt, G. E. in Saturn (eds Gehrels, T. & Matthews, M. S.) 195–238 (Univ. Arizona Press, 1984)

    Google Scholar 

  16. Dyudina, U. A. et al. Detection of visible lightning on Saturn. Geophys. Res. Lett. 37 L09205 10.1029/2010GL043188 (2010)

    Article  ADS  Google Scholar 

  17. Pérez-Hoyos, S. & Sánchez-Lavega, A. Solar flux in Saturn’s atmosphere: maximum penetration and heating rates in the aerosol and cloud layers. Icarus 180, 368–378 (2006)

    Article  ADS  Google Scholar 

  18. Hueso, R. & Sánchez-Lavega, A. A three-dimensional model of moist convection for the giant planets II: Saturn’s water and ammonia moist convective storms. Icarus 172, 255–271 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Baines, K. H. et al. Storm clouds on Saturn: lightning-inducted chemistry and associated materials consistent with Cassini/VIMS spectra. Planet. Space Sci. 57, 1650–1658 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Atreya, S. K. in Galileo’s Medicean Moons — Their Impact on 400 Years of Discovery (eds Barbieri, C. et al.) Ch. 16 (Cambridge Univ. Press, 2010)

    Google Scholar 

  21. Li, L. et al. Saturn’s emitted power. J. Geophys. Res. 115 E11002 10.1029/2010JE003631 (2010)

    Article  ADS  Google Scholar 

  22. Hanel, R. A., Conrath, B. J., Kunde, V. G., Pearl, J. C. & Pirraglia, J. A. Albedo, internal heat flux, and energy balance of Saturn. Icarus 53, 262–285 (1983)

    Article  ADS  Google Scholar 

  23. Sánchez-Lavega, A. et al. The Great White Spot and disturbances in Saturn’s equatorial atmosphere during 1990. Nature 353, 397–401 (1991)

    Article  ADS  Google Scholar 

  24. Hunt, G. E., Godfrey, D., Müller, J.-P. & Barrey, R. F. T. Dynamical features in the northern hemisphere of Saturn from Voyager 1 images. Nature 297, 132–134 (1982)

    Article  ADS  Google Scholar 

  25. Sromovsky, L. A., Revercomb, H. E., Krauss, R. J. & Suomi, V. E. Voyager 2 observations of Saturn’s northern mid-latitude cloud features: morphology, motions, and evolution. J. Geophys. Res. 88, 8650–8666 (1983)

    Article  ADS  Google Scholar 

  26. Kaiser, M. L., Connerney, J. E. P. & Desch, M. D. Atmospheric storm explanation of saturnian electrostatic discharges. Nature 303, 50–53 (1983)

    Article  ADS  Google Scholar 

  27. Zarka, P. & Pedersen, B. M. Statistical study of Saturn electrostatic discharges. J. Geophys. Res. 88, 9007–9018 (1983)

    Article  ADS  Google Scholar 

  28. Christian, H. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 108 (D1). 4005 10.1029/2002JD002347 (2003)

    Article  Google Scholar 

Download references


G.F. was supported by the Austrian Science Fund (FWF). Cassini research at the University of Iowa was funded by NASA/JPL. We thank A. Sánchez-Lavega for launching an alert on the webpage of the Planetary Virtual Observatory and Laboratory (, and the amateur astronomers who subsequently observed the storm on Saturn, namely, T. Akutsu, T. Barry, J. Castella, D. Chang, D. Gray, J. B. Jovani, W. Kivits, T. Kumamori, F. J. Melillo, D. Parker, D. Peach, J. Phillips, J.-J. Poupeau, J. Sussenbach, K. Yunoki and S. Walker. S. Ghomizadeh and T. Ikemura were the first to observe the storm before the alert.

Author information

Authors and Affiliations



G.F. analysed Cassini RPWS data and wrote the paper. W.S.K., D.A.G. and P.Z. helped in this analysis. U.A.D., A.P.I., S.P.E. and C.C.P. analysed the Cassini ISS image and calculated the energy of the storm. A.W. and C.G. imaged Saturn from the ground, and M.D. measured the size and drift of the storm from several images. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to G. Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, G., Kurth, W., Gurnett, D. et al. A giant thunderstorm on Saturn. Nature 475, 75–77 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing