Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond control of electrons emitted from a nanoscale metal tip


Attosecond science is based on steering electrons with the electric field of well controlled femtosecond laser pulses1. It has led to the generation of extreme-ultraviolet pulses2 with a duration of less than 100 attoseconds (ref. 3; 1 as = 10−18 s), to the measurement of intramolecular dynamics (by diffraction of an electron taken from the molecule under scrutiny4,5) and to ultrafast electron holography6. All these effects have been observed with atoms or molecules in the gas phase. Electrons liberated from solids by few-cycle laser pulses are also predicted7,8 to show a strong light-phase sensitivity, but only very small effects have been observed14. Here we report that the spectra of electrons undergoing photoemission from a nanometre-scale tungsten tip show a dependence on the carrier-envelope phase of the laser, with a current modulation of up to 100 per cent. Depending on the carrier-envelope phase, electrons are emitted either from a single sub-500-attosecond interval of the 6-femtosecond laser pulse, or from two such intervals; the latter case leads to spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Owing to field enhancement at the tip, a simple laser oscillator reaches the peak electric field strengths required for attosecond experiments at 100-megahertz repetition rates, rendering complex amplified laser systems dispensable. Practically, this work represents a simple, extremely sensitive carrier-envelope phase sensor, which could be shrunk in volume to about one cubic centimetre. Our results indicate that the attosecond techniques developed with (and for) atoms and molecules can also be used with solids. In particular, we foresee subfemtosecond, subnanometre probing of collective electron dynamics (such as plasmon polaritons9) in solid-state systems ranging in scale from mesoscopic solids to clusters and to single protruding atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experiment.
Figure 2: Carrier-envelope phase modulation in photoelectron spectra.
Figure 3: Theoretical modelling of the experimental data.

Similar content being viewed by others


  1. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Lemell, C., Tong, X.-M., Krausz, F. & Burgdörfer, J. Electron emission from metal surfaces by ultrashort pulses: determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Stockman, M. I. & Hewageegana, P. Absolute phase effect in ultrafast optical responses of metal nanostructures. Appl. Phys. A 89, 247–250 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  10. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Bucksbaum, P. H. The future of attosecond spectroscopy. Science 317, 766–769 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006)

    Article  ADS  Google Scholar 

  16. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Yanagisawa, H. et al. Optical control of field-emission sites by femtosecond laser pulses. Phys. Rev. Lett. 103, 257603 (2009)

    Article  ADS  Google Scholar 

  18. Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Schenk, M., Krüger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010)

    Article  ADS  Google Scholar 

  20. Kealhofer, C., Foreman, S. M., Gerlich, S. & Kasevich, M. A. Ultrafast laser-triggered emission from hafnium carbide tips. Phys. Rev. B (submitted); preprint at 〈〉 (2011)

  21. Paulus, G. G., Nicklich, W., Xu, H. L., Lambropoulos, P. & Walther, H. Plateau in above-threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Milosˇevic´, D. B., Paulus, G. G., Bauer, D. & Becker, W. Above-threshold ionization by few-cycle pulses. J. Phys. B 39, R203–R262 (2006)

    Article  ADS  Google Scholar 

  24. Lindner, F. et al. Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Baltusˇka, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

    Article  ADS  Google Scholar 

  26. Zherebtsov, S. et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Phys. advance online publication. 10.1038/nphys1983 (24 April 2011)

  27. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001)

    Article  ADS  Google Scholar 

  28. Gazibegovic´-Busuladzˇic´, A. et al. Electron rescattering in above-threshold photodetachment of negative ions. Phys. Rev. Lett. 104, 103004 (2010)

    Article  ADS  Google Scholar 

  29. Faisal, F. H. M., Kamin´ski, J. Z. & Saczuk, E. Photoemission and high-order harmonic generation from solid surfaces in intense laser fields. Phys. Rev. A 72, 023412 (2005)

    Article  ADS  Google Scholar 

  30. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007)

    Article  ADS  CAS  Google Scholar 

Download references


We thank M. Kling, C. Lemell, G. Wachter and B. Bergues for discussions, and J. Hoffrogge for reading the text before submission. This work has been supported in part by the European Union (FP7-IRG).

Author information

Authors and Affiliations



All authors contributed to all parts of the work.

Corresponding author

Correspondence to Peter Hommelhoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data 1-6, Supplementary Figures 1-4 with legends and additional references. (PDF 385 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing