Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a copper-transporting PIB-type ATPase

Abstract

Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu+-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca2+-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes’ and Wilson’s diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the L. pneumophila Cu + -ATPase LpCopA.
Figure 2: Details of CopA compared to the binding sites I and II in SERCA1a in the equivalent calcium-free state.
Figure 3: The cytoplasmic platform and the heavy-metal binding domain.
Figure 4: Proposed stages at the copper transport pathway of CopA.
Figure 5: Distribution of human ATP7A missense mutations associated with Menkes’ disease.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the L. pneumophila Lpg1024 CopA crystal structure have been deposited at the Protein Data Bank under accession code 3RFU.

References

  1. Lutsenko, S. & Kaplan, J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15607–15613 (1995)

    Article  CAS  Google Scholar 

  2. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nature Rev. Mol. Cell Biol. 5, 282–295 (2004)

    Article  Google Scholar 

  3. Axelsen, K. B. & Palmgren, M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998)

    Article  CAS  ADS  Google Scholar 

  4. Møller, A. B., Asp, T., Holm, P. B. & Palmgren, M. G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 46, 619–634 (2008)

    Article  Google Scholar 

  5. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    Article  CAS  ADS  Google Scholar 

  6. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  CAS  ADS  Google Scholar 

  7. Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004)

    Article  CAS  ADS  Google Scholar 

  8. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004)

    Article  CAS  ADS  Google Scholar 

  9. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature 450, 1036–1042 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Morth, J. P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007)

    Article  CAS  ADS  Google Scholar 

  11. Shinoda, T., Ogawa, H., Cornelius, F. & Toyoshima, C. Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459, 446–450 (2009)

    Article  CAS  ADS  Google Scholar 

  12. Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren, M. G. & Nissen, P. Crystal structure of the plasma membrane proton pump. Nature 450, 1111–1114 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967)

    Article  CAS  Google Scholar 

  14. Post, R. L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972)

    CAS  Google Scholar 

  15. Argüello, J. M., Eren, E. & Gonzalez-Guerrero, M. The structure and function of heavy metal transport P1B-ATPases. Biometals 20, 233–248 (2007)

    Article  Google Scholar 

  16. Banci, L. et al. Affinity gradients drive copper to cellular destinations. Nature 465, 645–648 (2010)

    Article  CAS  ADS  Google Scholar 

  17. Gonzalez-Guerrero, M. & Arguello, J. M. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc. Natl Acad. Sci. USA 105, 5992–5997 (2008)

    Article  CAS  ADS  Google Scholar 

  18. Gonzalez-Guerrero, M., Eren, E., Rawat, S., Stemmler, T. L. & Arguello, J. M. Structure of the two transmembrane Cu+ transport sites of the Cu+-ATPases. J. Biol. Chem. 283, 29753–29759 (2008)

    Article  CAS  Google Scholar 

  19. Silver, S., Nucifora, G., Chu, L. & Misra, T. K. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14, 76–80 (1989)

    Article  CAS  Google Scholar 

  20. Argüello, J. M. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J. Membr. Biol. 195, 93–108 (2003)

    Article  Google Scholar 

  21. Forbes, J. R., Hsi, G. & Cox, D. W. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J. Biol. Chem. 274, 12408–12413 (1999)

    Article  CAS  Google Scholar 

  22. Morin, I., Gudin, S., Mintz, E. & Cuillel, M. Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo . FEBS J. 276, 4483–4495 (2009)

    Article  CAS  Google Scholar 

  23. Williams, L. E. & Mills, R. F. P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci. 10, 491–502 (2005)

    Article  CAS  Google Scholar 

  24. Solioz, M., Abicht, H. K., Mermod, M. & Mancini, S. Response of gram-positive bacteria to copper stress. J. Biol. Inorg. Chem. 15, 3–14 (2010)

    Article  CAS  Google Scholar 

  25. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13 (1993)

    Article  CAS  Google Scholar 

  26. Chelly, J. et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19 (1993)

    Article  CAS  Google Scholar 

  27. Mercer, J. F. et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25 (1993)

    Article  CAS  Google Scholar 

  28. Zheng, Z. et al. Altered microglial copper hoemostasis in a mouse model of Alzheimer’s disease. J. Neurochem. 114, 1630–1638 (2010)

    Article  CAS  Google Scholar 

  29. Leonhardt, K., Gebhardt, R., Mossner, J., Lutsenko, S. & Huster, D. Functional interactions of Cu-ATPase ATP7B with cisplatin and the role of ATP7B in the resistance of cells to the drug. J. Biol. Chem. 284, 7793–7802 (2009)

    Article  CAS  Google Scholar 

  30. Sazinsky, M. H., Mandal, A. K., Arguello, J. M. & Rosenzweig, A. C. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J. Biol. Chem. 281, 11161–11166 (2006)

    Article  CAS  Google Scholar 

  31. Sazinsky, M. H., Agarwal, S., Arguello, J. M. & Rosenzweig, A. C. Structure of the actuator domain from the Archaeoglobus fulgidus Cu+-ATPase. Biochemistry 45, 9949–9955 (2006)

    Article  CAS  Google Scholar 

  32. Tsuda, T. & Toyoshima, C. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. EMBO J. 28, 1782–1791 (2009)

    Article  CAS  Google Scholar 

  33. Chintalapati, S., Al Kurdi, R., van Scheltinga, A. C. & Kuhlbrandt, W. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus . J. Mol. Biol. 378, 581–595 (2008)

    Article  CAS  Google Scholar 

  34. Wu, C. C., Rice, W. J. & Stokes, D. L. Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16, 976–985 (2008)

    Article  CAS  Google Scholar 

  35. Kim, E. H., Charpentier, X., Torres-Urquidy, O., McEvoy, M. M. & Rensing, C. The metal efflux island of Legionella pneumophila is not required for survival in macrophages and amoebas. FEMS Microbiol. Lett. 301, 164–170 (2009)

    Article  CAS  Google Scholar 

  36. Toyoshima, C., Sasabe, H. & Stokes, D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362, 469–471 (1993)

    Article  ADS  Google Scholar 

  37. Hatori, Y., Majima, E., Tsuda, T. & Toyoshima, C. Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J. Biol. Chem. 282, 25213–25221 (2007)

    Article  CAS  Google Scholar 

  38. Banci, L., Bertini, I., Ciofi-Baffoni, S., Huffman, D. L. & O’Halloran, T. V. Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(i)-loaded states. J. Biol. Chem. 276, 8415–8426 (2001)

    Article  CAS  Google Scholar 

  39. Jones, C. E., Daly, N. L., Cobine, P. A., Craik, D. J. & Dameron, C. T. Structure and metal binding studies of the second copper binding domain of the Menkes ATPase. J. Struct. Biol. 143, 209–218 (2003)

    Article  CAS  Google Scholar 

  40. Arnesano, F., Banci, L., Bertini, I., Huffman, D. L. & O’Halloran, T. V. Solution structure of the Cu(i) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40, 1528–1539 (2001)

    Article  CAS  Google Scholar 

  41. Boal, A. K. & Rosenzweig, A. C. Crystal structures of cisplatin bound to a human copper chaperone. J. Am. Chem. Soc. 131, 14196–14197 (2009)

    Article  CAS  Google Scholar 

  42. Daiho, T., Yamasaki, K., Danko, S. & Suzuki, H. Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme. J. Biol. Chem. 282, 34429–34447 (2007)

    Article  CAS  Google Scholar 

  43. Gonzalez-Guerrero, M., Hong, D. & Arguello, J. M. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. J. Biol. Chem. 284, 20804–20811 (2009)

    Article  CAS  Google Scholar 

  44. Inesi, G., Ma, H., Lewis, D. & Xu, C. Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J. Biol. Chem. 279, 31629–31637 (2004)

    Article  CAS  Google Scholar 

  45. Heijne, G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5, 3021–3027 (1986)

    Article  CAS  Google Scholar 

  46. Banci, L. et al. Copper(i)-mediated protein-protein interactions result from suboptimal interaction surfaces. Biochem. J. 422, 37–42 (2009)

    Article  CAS  Google Scholar 

  47. Long, F. et al. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467, 484–488 (2010)

    Article  CAS  ADS  Google Scholar 

  48. de Bie, P., Muller, P., Wijmenga, C. & Klomp, L. W. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet. 44, 673–688 (2007)

    Article  CAS  Google Scholar 

  49. Petrˇek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006)

    Article  Google Scholar 

  50. Gordon, E. et al. Effective high-throughput overproduction of membrane proteins in Escherichia coli . Protein Expr. Purif. 62, 1–8 (2008)

    Article  CAS  Google Scholar 

  51. Guerrero, S. A., Hecht, H. J., Hofmann, B., Biebl, H. & Singh, M. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718–723 (2001)

    Article  CAS  Google Scholar 

  52. Gourdon, P. HiLiDe—Systematic approach to membrane protein crystallization in lipid and detergent. Cryst. Growth Des. 11, 2098–2106 (2011)

    Article  CAS  Google Scholar 

  53. Cariani, L., Thomas, L., Brito, J. & del Castillo, J. R. Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal. Biochem. 324, 79–83 (2004)

    Article  CAS  Google Scholar 

  54. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  55. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  Google Scholar 

  56. Pedersen, B. P., Morth, J. P. & Nissen, P. Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history. Acta Crystallogr. D 66, 309–313 (2010)

    Article  CAS  Google Scholar 

  57. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007)

    CAS  Google Scholar 

  58. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    CAS  PubMed  Google Scholar 

  59. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  60. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  61. Olesen, C., Sorensen, T. L., Nielsen, R. C., Moller, J. V. & Nissen, P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004)

    Article  CAS  ADS  Google Scholar 

  62. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  63. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Pauluhn, C. Schulze-Briese, T. Tomizaki and V. Olieric (SLS), T. Ursby, M. Thunnissen, J. Unge and D. Haase (MAXLAB), and U. Müller, M. Weiss and K. Paithankar (BESSY) for assistance with synchrotron data collection. Support was provided by the Danscatt program of the Danish Natural Science Research Council. We also thank C. Buchrieser for supplying the L. pneumophila Philadelphia genome; X. D. Su for discussions, A. M. Nielsen for technical assistance and J. L. Karlsen for support on crystallographic computing. We are thankful to T. Deva and K. Faxén for preliminary functional analysis of the protein. P.G. was supported by the Swedish Research Council, X.-Y.L. by the China Scholarship Council and J.P.M. and B.P.P. by the Carlsberg Foundation. P.N. was supported by an advanced research grant (Biomemos) of the European Research Council and at earlier stages by a Hallas-Møller stipend of the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.G. initiated the project, designed the expression construct and developed the protein production protocol assisted by J.P.M. Protein purification, activity measurements, crystallization, data collection, structure determination, refinement, and overall analysis of results were designed and performed by P.G. and X.-Y.L. jointly. B.P.P. designed and performed the Molecular Replacement screening procedure to initiate phasing, and assisted in structure determination, refinement and structural analysis. T.S. and L.B.M. identified genetic data and collected phenotypic data from Menkes’ disease patients. P.N. designed and supervised the project, and analysed results. P.G., X.-Y.L., B.P.P. and P.N. wrote the paper and all authors commented on the paper.

Corresponding authors

Correspondence to Lisbeth Birk Møller or Poul Nissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with legends, Supplementary Tables 1-4 and additional references. (PDF 5477 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourdon, P., Liu, XY., Skjørringe, T. et al. Crystal structure of a copper-transporting PIB-type ATPase. Nature 475, 59–64 (2011). https://doi.org/10.1038/nature10191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing