Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth

Abstract

The circadian clock is required for adaptive responses to daily and seasonal changes in environmental conditions1,2,3. Light and the circadian clock interact to consolidate the phase of hypocotyl cell elongation to peak at dawn under diurnal cycles in Arabidopsis thaliana4,5,6,7. Here we identify a protein complex (called the evening complex)—composed of the proteins encoded by EARLY FLOWERING 3 (ELF3), ELF4 and the transcription-factor-encoding gene LUX ARRHYTHMO (LUX; also known as PHYTOCLOCK 1)—that directly regulates plant growth8,9,10,11,12. ELF3 is both necessary and sufficient to form a complex between ELF4 and LUX, and the complex is diurnally regulated, peaking at dusk. ELF3, ELF4 and LUX are required for the proper expression of the growth-promoting transcription factors encoded by PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 (also known as PHYTOCHROME INTERACTING FACTOR 3-LIKE 6) under diurnal conditions4,6,13. LUX targets the complex to the promoters of PIF4 and PIF5 in vivo. Mutations in PIF4 and/or PIF5 are epistatic to the loss of the ELF4–ELF3–LUX complex, suggesting that regulation of PIF4 and PIF5 is a crucial function of the complex. Therefore, the evening complex underlies the molecular basis for circadian gating of hypocotyl growth in the early evening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ELF3, ELF4 and LUX are co-expressed, and ELF3 directly interacts with both ELF4 and LUX in yeast.
Figure 2: ELF3 bridges a diurnally regulated complex containing ELF4 and LUX in vivo.
Figure 3: The EC regulates PIF5 and PIF4 expression through recruitment by LUX.
Figure 4: Hypocotyl growth defects are rescued by loss of PIF5 and PIF4 in EC component mutant backgrounds.

Similar content being viewed by others

References

  1. Wijnen, H. & Young, M. W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40, 409–448 (2006)

    Article  CAS  Google Scholar 

  2. Yakir, E., Hilman, D., Harir, Y. & Green, R. M. Regulation of output from the plant circadian clock. FEBS J. 274, 335–345 (2007)

    Article  CAS  Google Scholar 

  3. Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377 (2009)

    Article  CAS  Google Scholar 

  4. Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–361 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Michael, T. P. et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 6, e225 (2008)

    Article  Google Scholar 

  6. Niwa, Y., Yamashino, T. & Mizuno, T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana . Plant Cell Physiol. 50, 838–854 (2009)

    Article  CAS  Google Scholar 

  7. de Montaigu, A., Tóth, R. & Coupland, G. Plant development goes like clockwork. Trends Genet. 26, 296–306 (2010)

    Article  CAS  Google Scholar 

  8. Zagotta, M. T. et al. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10, 691–702 (1996)

    Article  CAS  Google Scholar 

  9. Hicks, K. A., Albertson, T. M. & Wagner, D. R. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis . Plant Cell 13, 1281–1292 (2001)

    Article  CAS  Google Scholar 

  10. Doyle, M. R. et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana . Nature 419, 74–77 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Hazen, S. P. et al. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl Acad. Sci. USA 102, 10387–10392 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Onai, K. & Ishiura, M. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10, 963–972 (2005)

    Article  CAS  Google Scholar 

  13. Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312–323 (2008)

    Article  CAS  Google Scholar 

  14. Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790–792 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 1293–1304 (2001)

    Article  CAS  Google Scholar 

  16. Khanna, R., Kikis, E. A. & Quail, P. H. EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol. 133, 1530–1538 (2003)

    Article  CAS  Google Scholar 

  17. Thines, B. & Harmon, F. G. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA 107, 3257–3262 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Mockler, T. C. et al. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72, 353–363 (2007)

    Article  CAS  Google Scholar 

  19. Michael, T. P. et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 4, e14 (2008)

    Article  Google Scholar 

  20. Helfer, A. et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 21, 126–133 (2011)

    Article  CAS  Google Scholar 

  21. Hazen, S. P. et al. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis . Plant Physiol. 138, 990–997 (2005)

    Article  CAS  Google Scholar 

  22. Yu, J. W. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32, 617–630 (2008)

    Article  CAS  Google Scholar 

  23. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Dixon, L. E. et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis . Curr. Biol. 21, 120–125 (2011)

    Article  CAS  Google Scholar 

  25. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis . Plant Cell 18, 1121–1133 (2006)

    Article  CAS  Google Scholar 

  26. Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690 (2008)

    Article  CAS  Google Scholar 

  27. Lu, S. X., Knowles, S. M., Andronis, C., Ong, M. S. & Tobin, E. M. CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis . Plant Physiol. 150, 834–843 (2009)

    Article  CAS  Google Scholar 

  28. Kikis, E. A., Khanna, R. & Quail, P. H. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 44, 300–313 (2005)

    Article  CAS  Google Scholar 

  29. Sawa, M., Nusinow, D. A., Kay, S. A. & Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis . Science 318, 261–265 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Para, A. et al. PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19, 3462–3473 (2007)

    Article  CAS  Google Scholar 

  31. Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Neff, M. M., Turk, E. & Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18, 613–615 (2002)

    Article  CAS  Google Scholar 

  33. Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001)

    Article  CAS  Google Scholar 

  34. Liu, Y. G., Mitsukawa, N., Oosumi, T. & Whittier, R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463 (1995)

    Article  CAS  Google Scholar 

  35. Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002)

    Article  CAS  Google Scholar 

  36. Pruneda-Paz, J., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481–1485 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

  38. Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217 (1997)

    Article  CAS  Google Scholar 

  39. Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratories Press, 1999)

    Google Scholar 

  40. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006)

    Article  CAS  Google Scholar 

  41. Haring, M. et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11 (2007)

    Article  Google Scholar 

  42. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000)

    CAS  PubMed  Google Scholar 

  43. Czechowski, T., Bari, R. P., Stitt, M., Scheible, W. R. & Udvardi, M. K. Real-time RT–PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 38, 366–379 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Y. Pongsawakul illustrated the model in Fig. 4c. We thank G. Breton, T. Hirota, J. Pruneda-Paz, D. Nagel, E. Kolmos and B. J. Cole for critical reading of the manuscript. We also thank J. Halverson, A. L. Quiroz and C. Valdivia for excellent technical assistance. pif4-101 pif5-1 seedlings were a generous gift from S. Lorrain and C. Fankhauser. F. Harmon originally identified the nature of the elf4-3 mutation and designed the dCAPS strategy. This work was supported by a University of California, San Diego, Chancellor’s Undergraduate Research Scholarship (to J.J.K.), grants from the European Molecular Biology Organization (ALTF 236-2005 to A.H.), the National Science Foundation (IBN-0416762 to T.F.S.) and the National Institutes of Health (NRSA GM083585 to D.A.N., NRSA GM080930 to E.E.H., R01 GM79712 to T.I., and R01 GM50006 and GM67837 to S.A.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.A.N., A.H., E.E.H., T.I., T.F.S., E.M.F. and S.A.K. designed the experiments. D.A.N. performed and analysed all of the immunoprecipitations and ChIP assays, generated and characterized the anti-ELF3 antibody and the transgenic lines, and generated the plasmids for yeast three-hybrid analysis. D.A.N. also co-performed the gene expression analysis with A.H. A.H. performed the yeast two- and one-hybrid assays and generated and characterized the LUX and LUX/NOX ami transgenic lines. E.E.H. generated the anti-LUX antibody, characterized transgenic lines and co-performed western blot analysis with D.A.N. J.J.K. measured hypocotyls, performed and analysed the yeast three-hybrid assay, and assisted with the yeast one-hybrid analysis and generation of the elf3-2 pif4-101 pif5-1 seedlings. T.I. performed the original yeast two-hybrid assays. T.F.S. generated the ELF4::ELF4–HA elf4-2 line. E.M.F. characterized the ELF4-transgenic lines. D.A.N. and S.A.K. wrote the manuscript.

Corresponding author

Correspondence to Steve A. Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1 and Supplementary Figures 1-12 with legends. (PDF 2011 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusinow, D., Helfer, A., Hamilton, E. et al. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011). https://doi.org/10.1038/nature10182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10182

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing