Observation of squeezed light from one atom excited with two photons

Abstract

Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times1. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example2,3 is the predicted ability of a single atom to produce quadrature-squeezed light4, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons5. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms6, but despite experimental efforts7,8,9, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity10, which is several orders of magnitude larger than in typical macroscopic media11,12,13. This produces observable quadrature squeezing14,15,16, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons17, the squeezed light stems from the quantum coherence of photon pairs emitted from the system18. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters19,20,21,22,23,24.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Four-photon process leading to quadrature squeezing for a nearly resonant excitation of a single atom strongly coupled to a mode of an optical cavity.
Figure 2: Photon beat in the time domain.
Figure 3: Squeezing from one atom.

References

  1. 1

    Grangier, P., Sanders, B. & Vuckovic, J. Focus on single photons on demand. N. J. Phys. 6, 85–100; 129; 163 (2004)

    Article  Google Scholar 

  2. 2

    Walls, D. F. & Zoller, P. Reduced quantum fluctuations in resonance fluorescence. Phys. Rev. Lett. 47, 709–711 (1981)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Vogel, W. & Welsch, D. G. Quantum Optics (Wiley-VCH, 2006)

    Google Scholar 

  4. 4

    Drummond, P. D. & Ficek, Z. Quantum Squeezing (Springer, 2004)

    Google Scholar 

  5. 5

    Mandel, L. Squeezed states and sub-poissonian photon statistics. Phys. Rev. Lett. 49, 136–138 (1982)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Foster, G. T., Orozco, L. A., Castro-Beltran, H. M. & Carmichael, H. J. Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED. Phys. Rev. Lett. 85, 3149–3152 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Höffges, J. T., Baldauf, H. W., Eichler, T., Helmfrid, S. R. & Walther, H. Heterodyne measurement of the fluorescent radiation of a single trapped ion. Opt. Commun. 133, 170–174 (1997)

    ADS  Article  Google Scholar 

  8. 8

    Gerber, S. et al. Intensity-field correlation of single-atom resonance fluorescence. Phys. Rev. Lett. 102, 183601 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stobińska, M., Sondermann, M. & Leuchs, G. Prospect for detecting squeezed states of light created by a single atom in free space. Opt. Commun. 283, 737–740 (2010)

    ADS  Article  Google Scholar 

  10. 10

    Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Lambrecht, A., Coudreau, T., Steinberg, A. & Giacobino, E. Squeezing with cold atoms. Eur. Phys. Lett. 36, 93–98 (1996)

    ADS  CAS  Article  Google Scholar 

  12. 12

    McCormick, C. F., Boyer, V., Arimondo, E. & Lett, P. D. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Corney, J. F. et al. Simulations and experiments on polarization squeezing in optical fiber. Phys. Rev. A 78, 023831 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Meystre, P. & Zubairy, M. S. Squeezed states in the Jaynes-Cummings model. Phys. Lett. A 89, 390–392 (1982)

    ADS  Article  Google Scholar 

  15. 15

    Carmichael, H. J. Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790–2793 (1985)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Carmichael, H. J. Statistical Methods in Quantum Optics 2nd edn (Springer, 2008)

    Google Scholar 

  17. 17

    Short, R. & Mandel, L. Observation of sub-poissonian photon statistics. Phys. Rev. Lett. 51, 384–387 (1983)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Deppe, F. et al. Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Schneebeli, L., Kira, M. & Koch, S. W. Microscopic theory of squeezed-light emission in strong-coupling semiconductor quantum-dot systems. Phys. Rev. A 80, 033843 (2009)

    ADS  Article  Google Scholar 

  24. 24

    Rebić, S., Twamley, J. & Milburn, G. J. Giant Kerr nonlinearities in circuit quantum electro-dynamics. Phys. Rev. Lett. 103, 150503 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Varada, G. V., Sanjay Kumar, M. & Agarwal, G. S. Quantum effects of the atom-cavity interaction on four-wave mixing. Opt. Commun. 62, 328–332 (1987)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    ADS  Article  Google Scholar 

  28. 28

    Vahlbruch, H. et al. Observation of squeezed light with 10-db quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008)

    ADS  Article  Google Scholar 

  29. 29

    Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Gehr, R. et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)

    ADS  Article  Google Scholar 

  31. 31

    Bozyigit, D. et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nature Phys. 7, 154–158 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft (Research Unit 635), the European Union (IST project AQUTE, ITN network CCQED) and the Bavarian PhD programme of excellence (QCCC) is acknowledged.

Author information

Affiliations

Authors

Contributions

All authors contributed to the implementation of the experiment, the formulation of the theory, the analysis of the data and the writing of the manuscript.

Corresponding authors

Correspondence to A. Ourjoumtsev or K. Murr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data 1-4, Supplementary Figures 1-2 with legends and additional references. (PDF 243 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ourjoumtsev, A., Kubanek, A., Koch, M. et al. Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011). https://doi.org/10.1038/nature10170

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.