Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conditional knockout resource for the genome-wide study of mouse gene function

Abstract

Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the ‘knockout-first’ conditional allele.
Figure 2: Computational design of oligonucleotides for recombineering and LR-PCR genotyping.
Figure 3: Construction of Gateway-adapted intermediate targeting vectors by 96-well BAC recombineering.
Figure 4: Intermediate and final targeting constructs.
Figure 5: Genotyping ES clones by LR-PCR sequencing.

Similar content being viewed by others

References

  1. Gossler, A., Joyner, A. L., Rossant, J. & Skarnes, W. C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1989)

    Article  CAS  ADS  Google Scholar 

  2. Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992)

    Article  CAS  Google Scholar 

  3. Zambrowicz B. P et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc. Natl Acad. Sci. USA 100, 14109–14114 (2003)

    Article  ADS  Google Scholar 

  4. International Gene Trap Consortium. A public gene trap resource for mouse functional genomics. Nature Genet. 36, 543–544 (2004)

  5. Hansen, G. M. et al. Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res. 18, 1670–1679 (2008)

    Article  CAS  Google Scholar 

  6. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984)

    Article  CAS  ADS  Google Scholar 

  7. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448 (1986)

    Article  CAS  ADS  Google Scholar 

  8. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987)

    Article  CAS  Google Scholar 

  9. van der Weyden, L., Adams, D. J. & Bradley, A. Tools for targeted manipulation of the mouse genome. Physiol. Genomics 11, 133–164 (2002)

    Article  CAS  Google Scholar 

  10. Glaser, S., Anastasiadis, K. & Stewart, A. F. Current issues in mouse genome engineering. Nature Genet. 37, 1187–1193 (2005)

    Article  CAS  Google Scholar 

  11. Valenzuela, D. M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nature Biotechnol. 21, 652–659 (2003)

    Article  CAS  Google Scholar 

  12. Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002)

    Article  CAS  ADS  Google Scholar 

  13. Zuniga, A. et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev. 18, 1553–1564 (2004)

    Article  CAS  Google Scholar 

  14. International Mouse Knockout Consortium . A mouse for all reasons. Cell 128, 9–13 (2007)

    Article  Google Scholar 

  15. Poueymirou, W. T. et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nature Biotechnol. 25, 91–99 (2007)

    Article  CAS  Google Scholar 

  16. Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetics resources. Nature Methods 6, 493–495 (2009)

    Article  CAS  Google Scholar 

  17. Gertsenstein, M. et al. Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS ONE 5, e11260 (2010)

    Article  ADS  Google Scholar 

  18. Ringwald, M. et al. The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res. 39 (Database issue). D849–D855 (2011)

    Article  CAS  Google Scholar 

  19. Branda, C. S. & Dymecki, S. M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004)

    Article  CAS  Google Scholar 

  20. Testa, G. et al. A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38, 151–158 (2004)

    Article  CAS  Google Scholar 

  21. Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genet. 28, 241–249 (2001)

    Article  CAS  Google Scholar 

  22. Yang, S. H. et al. Caution! Analyze transcripts from conditional knockout alleles. Transgenic Res. 18, 483–489 (2009)

    Article  CAS  Google Scholar 

  23. Liang, Q., Conte, N., Skarnes, W. C. & Bradley, A. Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 17453–17456 (2008)

    Article  CAS  ADS  Google Scholar 

  24. Wilming, L. G. et al. The vertebrate genome annotation (Vega) database. Nucleic Acids Res. 36, D753–D760 (2008)

    Article  CAS  Google Scholar 

  25. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature Methods 3, 839–844 (2006)

    Article  CAS  Google Scholar 

  26. Poser, I. et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nature Methods 5, 409–415 (2008)

    Article  CAS  ADS  Google Scholar 

  27. Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hope, I. A. et al. Feasibility of genome-scale construction of promoter:reporter gene fusions for expression in Caenorhabditis elegans using a multisite gateway recombination system. Genome Res. 14, 2070–2075 (2004)

    Article  CAS  Google Scholar 

  29. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)

    Article  CAS  ADS  Google Scholar 

  30. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988)

    Article  CAS  ADS  Google Scholar 

  31. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl Acad. Sci. USA 87, 9918–9922 (1990)

    Article  CAS  ADS  Google Scholar 

  32. Lay, J. M., Friis-Hansen, L., Gillespie, P. J. & Samuelson, L. C. Rapid confirmation of gene targeting in embryonic stem cells using two long-range PCR techniques. Transgenic Res. 7, 135–140 (1998)

    Article  CAS  Google Scholar 

  33. Friedel, R. H. et al. Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proc. Natl Acad. Sci. USA 102, 13188–13193 (2005)

    Article  CAS  ADS  Google Scholar 

  34. Skarnes, W. C. Two ways to trap a gene in mice. Proc. Natl Acad. Sci. USA 102, 13001–13002 (2005)

    Article  CAS  ADS  Google Scholar 

  35. Skarnes, W. C., Moss, J. E., Hurtley, S. M. & Beddington, R. S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl Acad. Sci. USA 92, 6592–6596 (1995)

    Article  CAS  ADS  Google Scholar 

  36. de Felipe, P., Luke, G. A., Brown, J. D. & Ryan, M. D. Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol. J. 5, 213–223 (2010)

    Article  CAS  Google Scholar 

  37. Hasty, P., Rivera-Perez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591 (1991)

    Article  CAS  Google Scholar 

  38. Deng, C. & Capecchi, M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992)

    Article  CAS  Google Scholar 

  39. te Riele, H., Maanday, E. R. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl Acad. Sci. USA 89, 5128–5132 (1992)

    Article  CAS  ADS  Google Scholar 

  40. Yanagawa, Y. et al. Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res. 8, 215–221 (1999)

    Article  CAS  Google Scholar 

  41. Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007)

    Article  CAS  Google Scholar 

  42. Buehr, M. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298 (2008)

    Article  CAS  Google Scholar 

  43. Li, P. et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310 (2008)

    Article  CAS  Google Scholar 

  44. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  CAS  ADS  Google Scholar 

  45. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  Google Scholar 

  46. Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4, R9 (2003)

    Article  Google Scholar 

  47. Wang, J. et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotechnol. 32, 43–53 (2006)

    Article  Google Scholar 

  48. Kast, P. pKSS—a second-generation general purpose cloning vector for efficient positive selection of recombinant clones. Gene 138, 109–114 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people for technical assistance: D. Klose, D. Oakley, W. Yang and L. Stebbings for informatics/vector design; R. Bennett, A. Horton and A. van Brunt for manual gene annotation/vector design; L. Cho, R. Li, J.-F. Popoff, M. Sharma and Y. Zhang for recombineering; G. Belteki, P. Tate, Y. Bekele and S. Borchia for targeting vectors; D. Fraser, J. Greystrong, N. Gueorguieva, M. Jackson, P. Ramagiri, I. Walczak, J. Woodward, E. Stebbings, M. Martinez, A. Tsang and Y. Yoshinaga for vector/ES quality control; and D. Edwards, S. Harris, N. Krishnappa, R. Leah and A. Tait for ES cells. We are grateful for advice on the Gateway system from J. Chesnut of Invitrogen. Finally, we wish to thank W. Wurst, K. Lloyd, and our EUCOMM and KOMP colleagues who are contributing to the production and distribution of the conditional knockout resource. This work was funded by the Wellcome Trust Sanger Institute, grants from the National Institutes of Health (KOMP, U01-HG004080 to W.C.S., P.J.d.J. and A.B.) from the EU Sixth Framework Programme (EUCOMM, to W.C.S., A.F.S. and A.B.).

Author information

Authors and Affiliations

Authors

Contributions

W.C.S., B.R., A.P.W, M.K., W.B. and A.O.M. designed the experiments and contributed equally to this work. V.I. and T.C. developed the vector design software. A.O.M., M.T. and J.H. performed and managed manual curation of gene structures and selection of conditional designs. The modular design of targeting vectors was conceived by B.R. Recombineering of vectors was developed by B.R., W.C.S, M.K., M.N. and P.J.d.J., and managed by M.K. and P.J.d.J. Recombineering reagents and advice were supplied by J.F. and A.F.S. High-throughput targeting of ES cells was developed by W.C.S. and managed by W.B. Sequence confirmation of vectors and genotyping of targeted ES cell clones was developed and managed by A.P.W., with informatic support from V.I., D.J., J.S. and P.B. A.B. and A.F.S. inspired the work and wrote the paper together with W.C.S. All authors read and provided comments on the final manuscript.

Corresponding author

Correspondence to William C. Skarnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Detailed information on targeted genes is available from the IKMC web portal (http://www.knockoutmouse.org). Targeting constructs and mutant ES cells are available upon request from the EUCOMM (http://www.eummcr.org) and KOMP (http://www.komp.org) repositories.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-3, Supplementary Figures 1-6 with legends and additional references. (PDF 509 kb)

Supplementary Data

The file contains a list of genes and data for high-throughput gene targeting experiments. (XLS 884 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skarnes, W., Rosen, B., West, A. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011). https://doi.org/10.1038/nature10163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing