Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Architecture of the Mediator head module

Abstract

Mediator is a key regulator of eukaryotic transcription1, connecting activators and repressors bound to regulatory DNA elements with RNA polymerase II1,2,3,4 (Pol II). In the yeast Saccharomyces cerevisiae, Mediator comprises 25 subunits with a total mass of more than one megadalton (refs 5, 6) and is organized into three modules, called head, middle/arm and tail7,8,9. Our understanding of Mediator assembly and its role in regulating transcription has been impeded so far by limited structural information. Here we report the crystal structure of the essential Mediator head module (seven subunits, with a mass of 223 kilodaltons) at a resolution of 4.3 ångströms. Our structure reveals three distinct domains, with the integrity of the complex centred on a bundle of ten helices from five different head subunits. An intricate pattern of interactions within this helical bundle ensures the stable assembly of the head subunits and provides the binding sites for general transcription factors and Pol II. Our structural and functional data suggest that the head module juxtaposes transcription factor IIH and the carboxy-terminal domain of the largest subunit of Pol II, thereby facilitating phosphorylation of the carboxy-terminal domain of Pol II. Our results reveal architectural principles underlying the role of Mediator in the regulation of gene expression.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overall structure of the Mediator head module.
Figure 2: Mechanism of Mediator head module complex assembly.
Figure 3: Structures of fixed and movable jaw domains.
Figure 4: Structure of the neck domain, and model of the Pol II–Mediator–TFIIH complex.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession code 3RJ1.

References

  1. Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005)

    CAS  Article  PubMed  Google Scholar 

  2. Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J. W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005)

    CAS  Article  PubMed  Google Scholar 

  3. Boube, M., Joulia, L., Cribbs, D. L. & Bourbon, H. M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143–151 (2002)

    CAS  Article  PubMed  Google Scholar 

  4. Malik, S. & Roeder, R. G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nature Rev. Genet. 11, 761–772 (2010)

    CAS  Article  PubMed  Google Scholar 

  5. Bjorklund, S. & Gustafsson, C. M. The yeast Mediator complex and its regulation. Trends Biochem. Sci. 30, 240–244 (2005)

    Article  PubMed  Google Scholar 

  6. Guglielmi, B. et al. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32, 5379–5391 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M. & Kornberg, R. D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Davis, J. A., Takagi, Y., Kornberg, R. D. & Asturias, F. A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002)

    CAS  Article  PubMed  Google Scholar 

  9. Cai, G., Imasaki, T., Takagi, Y. & Asturias, F. J. Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559–567 (2009)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Takagi, Y. et al. Head module control of mediator interactions. Mol. Cell 23, 355–364 (2006)

    CAS  Article  PubMed  Google Scholar 

  11. Nonet, M. L. & Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993)

    CAS  Article  PubMed  Google Scholar 

  13. Thompson, C. M. & Young, R. A. General requirement for RNA polymerase II holoenzymes in vivo . Proc. Natl Acad. Sci. USA 92, 4587–4590 (1995)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998)

    CAS  Article  PubMed  Google Scholar 

  15. Takagi, Y. & Kornberg, R. D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006)

    CAS  Article  PubMed  Google Scholar 

  16. Cai, G. et al. Mediator head module structure and functional interactions. Nature Struct. Mol. Biol. 17, 273–279 (2010)

    CAS  Article  Google Scholar 

  17. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008)

    CAS  Article  PubMed  Google Scholar 

  18. Larivière, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Struct. Mol. Biol. 13, 895–901 (2006)

    Article  Google Scholar 

  19. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994)

    CAS  Article  PubMed  Google Scholar 

  20. Svejstrup, J. Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl Acad. Sci. USA 94, 6075–6078 (1997)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Max, T., Sogaard, M. & Svejstrup, J. Q. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007)

    Article  Google Scholar 

  22. Payne, J. M., Laybourn, P. J. & Dahmus, M. E. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J. Biol. Chem. 264, 19621–19629 (1989)

    CAS  PubMed  Google Scholar 

  23. Kang, J. S. et al. The structural and functional organization of the yeast mediator complex. J. Biol. Chem. 276, 42003–42010 (2001)

    CAS  Article  PubMed  Google Scholar 

  24. Koleske, A. J., Buratowski, S., Nonet, M. & Young, R. A. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69, 883–894 (1992)

    CAS  Article  PubMed  Google Scholar 

  25. Fitzgerald, D. J. et al. Protein complex expression by using multigene baculoviral vectors. Nature Methods 3, 1021–1032 (2006)

    CAS  Article  PubMed  Google Scholar 

  26. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods 4, 251–256 (2007)

    CAS  Article  PubMed  Google Scholar 

  27. Tempst, P., Geromanos, S., Elicone, C. & Erdjument-Bromage, H. Improvements in microsequencer performance for low picomole sequence analysis. Methods 6, 248–261 (1994)

    CAS  Article  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  PubMed  Google Scholar 

  29. Adams, P. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  31. McCoy, A. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D 66, 470–478 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Cowtan, K. Modified phased translation functions and their application to molecular-fragment location. Acta Crystallogr. D 54, 750–756 (1998)

    CAS  Article  PubMed  Google Scholar 

  34. Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010)

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  36. Bryson, K. et al. Protein structure prediction servers at University College London. Nucleic Acids Res. 33, W36–W38 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Pettersen, E. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    CAS  Article  PubMed  Google Scholar 

  38. Stoffler, G. & Stoffler-Meilicke, M. The Ultrastructure of Macromolecular Complexes Studied with Antibodies 409–455 (De Gruyter, 1983)

    Google Scholar 

  39. Tischendorf, G. W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134, 187–208 (1974)

    CAS  Article  PubMed  Google Scholar 

  40. Scheres, S. H. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005)

    CAS  Article  PubMed  Google Scholar 

  41. Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004)

    CAS  Article  PubMed  Google Scholar 

  42. Brignole, E. J., Smith, S. & Asturias, F. J. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nature Struct. Mol. Biol. 16, 190–197 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Messerle for providing the Ta6Br14 metal cluster, T. Hurley for reading the manuscript, M. Georgiadis for discussions, C. Kaplan for his advice on yeast genetics, T. Earnest for giving us beam time and L. Fabrizio for assisting with the N-terminal sequence analysis. We thank the CCP4 summer school, funded by the NCI (Y1-CO-1020), and NIGMS (Y1-GM-1104) for their assistance with the twinning data analysis. Y.T. thanks the instructors on ‘The X-Ray Methods Course’ at Cold Spring Harbor Laboratory. This work was supported by US National Science Foundation grant MCB 0843026 (Y.T.); the American Heart Association 0735395N (Y.T.); a Human Frontier Science Program long-term fellowship (T.I.); NIH grants R01 GM67167 (F.J.A.) and GM36659 (R.D.K.); NCI Cancer Center Support Grant P30 CA08748 (to the MSKCC Microchemistry and Proteomics Core Laboratory); and the European Commission Framework Program 7 projects INSTRUCT and P-CUBE (I.B.). X-ray data were collected at the GM/CA-CAT at the Advanced Photon Source, Argonne National Laboratory. GM/CA-CAT is funded by the NIH (Y1-CO-1020 and Y1-GM-1104) and the Advanced Photon Source is supported by the DOE (DE-AC02-06CH11357). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, supported by the DOE and the NIH, and at the Advanced Light Source, supported by the DOE (DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

T.I., I.B. and Y.T. implemented the MultiBac system. T.I. was mainly responsible for protein complex preparation, crystallization, data collection, data analysis and model building in collaboration with Y.T. T.I., H.E.-B. and P.T. carried out mass spectroscopy analysis. G. Calero, G.L.K. and Y.T. carried out the initial crystallization and data collection, supervised by R.D.K.. Y.T., T.I. and F.C. designed and carried out expression of the mutant head modules and their biochemical characterization. Y.T. and K.Y. designed and carried out the yeast genetic experiment. Y.T. carried out the in vitro transcription assay and the CTD kinase assay; G. Cai, K.-L.T. and F.J.A. carried out the electron microscopy study on the head module and its mutants. T.I., F.J.A. and Y.T. discussed and interpreted all results. Y.T. supervised the X-ray, biochemical and yeast genetic work, and wrote the manuscript in collaboration with T.I., I.B., F.J.A. and R.D.K.

Corresponding author

Correspondence to Yuichiro Takagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1-7, Supplementary Tables 1-4, Supplementary Fgures 1-19 with legends and additional references. (PDF 2568 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imasaki, T., Calero, G., Cai, G. et al. Architecture of the Mediator head module. Nature 475, 240–243 (2011). https://doi.org/10.1038/nature10162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10162

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing