Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2

Abstract

The entanglement of quantum states is both a central concept in fundamental physics and a potential tool for realizing advanced materials and applications. The quantum superpositions underlying entanglement are at the heart of the intricate interplay of localized spin states and itinerant electronic states that gives rise to the Kondo effect in certain dilute magnetic alloys1. In systems where the density of localized spin states is sufficiently high, they can no longer be treated as non-interacting; if they form a dense periodic array, a Kondo lattice may be established1. Such a Kondo lattice gives rise to the emergence of charge carriers with enhanced effective masses, but the precise nature of the coherent Kondo state responsible for the generation of these heavy fermions remains highly debated1,2,3. Here we use atomic-resolution tunnelling spectroscopy to investigate the low-energy excitations of a generic Kondo lattice system, YbRh2Si2. We find that the hybridization of the conduction electrons with the localized 4f electrons results in a decrease in the tunnelling conductance at the Fermi energy. In addition, we observe unambiguously the crystal-field excitations of the Yb3+ ions. A strongly temperature-dependent peak in the tunnelling conductance is attributed to the Fano resonance4,5 resulting from tunnelling into the coherent heavy-fermion states that emerge at low temperature. Taken together, these features reveal how quantum coherence develops in heavy 4f-electron Kondo lattices. Our results demonstrate the efficiency of real-space electronic structure imaging for the investigation of strong electronic correlations6,7, specifically with respect to coherence phenomena, phase coexistence and quantum criticality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topography of a cleaved YbRh 2 Si 2 single crystal at 4.6 K.
Figure 2: Tunnelling spectroscopy of YbRh2Si2.
Figure 3: Heavy-quasiparticle formation in a Kondo lattice.

Similar content being viewed by others

References

  1. Shiba, S. Kuramoto, Y. (eds) Kondo effect − 40 years after the discovery. J. Phys. Soc. Jpn 74 (special topic),. 1–238 (2005)

    Google Scholar 

  2. Burdin, S., Georges, A. & Grempel, D. R. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 85, 1048–1051 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Yang, Y., Fisk, Z., Lee, H.-O., Thompson, J. D. & Pines, D. Scaling the Kondo lattice. Nature 454, 611–613 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  CAS  Google Scholar 

  5. Schiller, A. & Hershfield, S. Theory of scanning tunneling spectroscopy of a magnetic adatom on a metallic surface. Phys. Rev. B 61, 9036–9046 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 . Nature 465, 570–576 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2 . Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Wahl, P. et al. Kondo temperature of magnetic impurities at surfaces. Phys. Rev. Lett. 93, 176603 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Prüser, H. et al. Long-range Kondo signature of a single magnetic impurity. Nature Phys. 7, 203–206 (2011)

    Article  ADS  Google Scholar 

  14. Cox, D. L. & Zawadowski, A. Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 47, 599–942 (1998)

    Article  CAS  Google Scholar 

  15. Fujimori, S.-I. et al. Electronic structure of heavy fermion uranium compounds studied by core-level photoelectron spectroscopy. J. Phys. Soc. Jpn (in the press)

  16. Stockert, O. et al. Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2 . Physica B 378, 157–158 (2006)

    Article  ADS  Google Scholar 

  17. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Cornut, B. & Coqblin, B. Influence of the crystalline field on the Kondo effect of alloys and compounds with cerium impurities. Phys. Rev. B 5, 4541–4561 (1972)

    Article  ADS  Google Scholar 

  19. Trovarelli, O. et al. YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Köhler, U., Oeschler, N., Steglich, F., Maquilon, S. & Fisk, Z. Energy scales of Lu1−xYbxRh2Si2 by means of thermopower investigations. Phys. Rev. B 77, 104412 (2008)

    Article  ADS  Google Scholar 

  21. Friedemann, S. et al. Hall effect measurements and electronic structure calculations on YbRh2Si2 and its reference compounds LuRh2Si2 and YbIr2Si2 . Phys. Rev. B 82, 035103 (2010)

    Article  ADS  Google Scholar 

  22. Danzenbächer, S. et al. Momentum dependence of 4f hybridization in heavy-fermion compounds: angle-resolved photoemission study of YbIr2Si2 and YbRh2Si2 . Phys. Rev. B 75, 045109 (2007)

    Article  ADS  Google Scholar 

  23. Costi, T. A. & Manini, N. Low-energy scales and temperature-dependent photoemission of heavy fermions. J. Low-Temp. Phys. 126, 835–866 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Kroha, J. et al. Structure and transport in multi-orbital Kondo systems. Physica E 18, 69–72 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Maltseva, M., Dzero, M. & Coleman, P. Electron cotunneling into a Kondo lattice. Phys. Rev. Lett. 103, 206402 (2009)

    Article  ADS  Google Scholar 

  26. Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo systems. Phys. Rev. Lett. 104, 187202 (2010)

    Article  ADS  Google Scholar 

  27. Wölfle, P., Dubi, Y. & Balatsky, A. V. Tunneling into clean heavy fermion compounds: origin of the Fano line shape. Phys. Rev. Lett. 105, 246401 (2010)

    Article  ADS  Google Scholar 

  28. Újsághy, O., Kroha, J., Szunyogh, L. & Zawadowski, A. Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85, 2557–2560 (2000)

    Article  ADS  Google Scholar 

  29. Martin, R. M. Fermi-surface sum rule and its consequences for periodic Kondo and mixed-valence systems. Phys. Rev. Lett. 48, 362–365 (1982)

    Article  ADS  CAS  Google Scholar 

  30. Kim, C.-I., Kuramoto, Y. & Kasuya, T. Self-consistent dynamical theory for the Anderson lattice. J. Phys. Soc. Jpn 59, 2414–2425 (1990)

    Article  ADS  Google Scholar 

  31. Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Coleman, T. Costi, A. Georges, D. Morr, J. Schmalian, S. Seiro, Q. Si and P. Wölfle for discussions. We are indebted to J. C. Davis for comments on our manuscript. This work is partly supported by the German Research Foundation through DFG Forschergruppe 960.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and S.W. designed the project. S.E. performed measurements, S.E. and S.W. conducted the data analysis. S.K. provided the theoretical framework and non-crossing approximation calculations. G.Z. did the band-structure calculations. C.K. and C.G. synthesized and characterized the materials. S.W., S.K. and F.S. wrote the manuscript.

Corresponding author

Correspondence to S. Wirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, and Data, Supplementary Figures 1-5 with legends and additional references. (PDF 1385 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, S., Kirchner, S., Krellner, C. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2. Nature 474, 362–366 (2011). https://doi.org/10.1038/nature10148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing