Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atomic physics and quantum optics using superconducting circuits

Abstract

Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superconducting circuits as artificial atoms.
Figure 2: Three-level atoms and frequency conversions.
Figure 3: Electromagnetically induced transparency.
Figure 4: Lasing.
Figure 5: Cooling a three-level artificial atom and a nearby two-level system.
Figure 6: Transferring quantum information between two stationary qubits via a cavity.

Similar content being viewed by others

References

  1. Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  MATH  Google Scholar 

  2. You, J. Q. & Nori, F. Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005)

    Article  CAS  Google Scholar 

  3. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)A review of superconducting circuits as qubits.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Nakamura, Y., Pashkin & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    Article  ADS  CAS  Google Scholar 

  6. van der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yu, Y., Han, S. Y., Chu, X., Chu, S. I. & Wang, Z. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. You, J. Q., Hu, X., Ashhab, S. & Nori, F. Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Steffen, M. et al. High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)Report of a low-decoherence flux qubit experiment.

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  CAS  Google Scholar 

  13. You, J. Q. & Nori, F. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)Report of the strong-coupling regime between a superconducting flux qubit and a resonator composed of an inductance and a capacitance.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)Report of the strong-coupling regime between a superconducting charge qubit and a coplanar waveguide resonator composed of a transmission line.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Fragner, A. et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science 322, 1357–1360 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Devoret, M. H., Girvin, S. & Schoelkopf, R. Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. (Leipz.) 16, 767–779 (2007)

    Article  ADS  CAS  MATH  Google Scholar 

  19. Zueco, D., Reuther, G. M., Kohler, S. & Hänggi, P. Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80, 033846 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Ashhab, S. & Nori, F. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Nataf, P. & Ciuti, C. Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime. Phys. Rev. Lett. 104, 023601 (2010)

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Phys. 6, 772–776 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Forn-Díaz, P. et al. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Wilson, C. M. et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007)Report of dressed states of a superconducting charge qubit and an intense microwave field.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Liu, Y. X., You, J. Q., Wei, L. F., Sun, C. P. & Nori, F. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)Analysis of parity symmetry and selection rules in flux qubit circuits.

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Deppe, F. et al. Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008)

    Article  ADS  CAS  Google Scholar 

  27. de Groot, P. C. et al. Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits. Nature Phys. 6, 763–766 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  CAS  Google Scholar 

  29. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997)

    Book  Google Scholar 

  30. You, J. Q., Liu, Y. X., Sun, C. P. & Nori, F. Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Murali, K. V. R. M., Dutton, Z., Oliver, W. D., Crankshaw, D. S. & Orlando, T. P. Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. Phys. Rev. Lett. 93, 087003 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Dutton, Z., Murali, K. V. R. M., Oliver, W. D. & Orlando, T. P. Electromagnetically induced transparency in superconducting quantum circuits: effects of decoherence, tunneling, and multilevel crosstalk. Phys. Rev. B 73, 104516 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Ian, H., Liu, Y. X. & Nori, F. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)

    Article  ADS  CAS  Google Scholar 

  34. Sillanpää, M. A. et al. Autler-Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Abdumalikov, A. A., Jr et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Rodrigues, D. A., Imbers, J. & Armour, A. D. Quantum dynamics of a resonator driven by a superconducting single-electron transistor: a solid-state analogue of the micromaser. Phys. Rev. Lett. 98, 067204 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Hauss, J., Fedorov, A., Hutter, C., Shnirman, A. & Schön, G. Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. Lett. 100, 037003 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Ashhab, S., Johansson, J. R., Zagoskin, A. M. & Nori, F. Single-artificial-atom lasing using a voltage-biased superconducting charge qubit. N. J. Phys. 11, 023030 (2009)

    Article  CAS  Google Scholar 

  39. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Grajcar, M. et al. Sisyphus cooling and amplification by a superconducting qubit. Nature Phys. 4, 612–616 (2008)

    Article  CAS  Google Scholar 

  41. Meystre, P. Atom Optics (Springer, 2001)

    Book  Google Scholar 

  42. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006)Report of cooling for a flux qubit using an inverse process of state population inversion.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. You, J. Q., Liu, Y. X. & Nori, N. Simultaneous cooling of an artificial atom and its neighboring quantum system. Phys. Rev. Lett. 100, 047001 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003)

    Article  ADS  CAS  Google Scholar 

  45. Martin, I., Shnirman, A., Tian, L. & Zoller, P. Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Zhang, P., Wang, Y. D. & Sun, C. P. Cooling mechanism for a nonmechanical resonator by periodic coupling to a Cooper pair box. Phys. Rev. Lett. 95, 097204 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Grajcar, M., Ashhab, S., Johansson, J. R. & Nori, F. Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)

    Article  ADS  CAS  Google Scholar 

  49. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010); published online 9 December 2009.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)Report of quantum-information transfer between two superconducting qubits using single photons generated in a cavity as a quantum bus.

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)Report of the controllable and deterministic generation of complex superpositions of states with different number of photons by using superconducting circuits.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Law, C. K. & Eberly, J. H. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Liu, Y. X., Wei, L. F. & Nori, F. Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004)

    Article  ADS  CAS  Google Scholar 

  58. Wang, H. et al. Measurement of the decay of Fock states in a superconducting quantum circuit. Phys. Rev. Lett. 101, 240401 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Wang, H. et al. Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Liu, Y. X., Wei, L. F. & Nori, F. Tomographic measurements on superconducting qubit states. Phys. Rev. B 72, 014547 (2005)

    Article  ADS  CAS  Google Scholar 

  61. Steffen, M. et al. State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)

    Article  ADS  PubMed  CAS  Google Scholar 

  62. Katz, N. et al. Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  64. Filipp, S. et al. Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature Phys. 4, 523–526 (2008)

    Article  CAS  Google Scholar 

  66. Bialczak, R. C. et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nature Phys. 6, 409–413 (2010)

    Article  ADS  CAS  Google Scholar 

  67. Johansson, J. R., Johansson, G., Wilson, C. M. & Nori, F. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Wei, L. F., Johansson, J. R., Cen, L. X., Ashhab, S. & Nori, F. Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Rangelov, A. A. et al. Stark-shift-chirped rapid-adiabatic-passage technique among three states. Phys. Rev. A 72, 053403 (2005)

    Article  ADS  CAS  Google Scholar 

  70. Johnson, B. R. et al. Quantum non-demolition detection of single microwave photons in a circuit. Nature Phys. 6, 663–667 (2010)

    Article  ADS  CAS  Google Scholar 

  71. Shevchenko, S. N., Ashhab, S. & Nori, F. Landau-Zener-Strückelberg interferometry. Phys. Rep. 492, 1–30 (2010)

    Article  ADS  CAS  Google Scholar 

  72. Zhou, L., Gong, Z. R., Liu, Y. X., Sun, C. P. & Nori, F. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Zhou, L., Dong, H., Liu, Y. X., Sun, C. P. & Nori, F. Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    Article  ADS  CAS  Google Scholar 

  74. Shen, J. T. & Fan, S. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)

    Article  ADS  PubMed  CAS  Google Scholar 

  75. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Lupas¸cu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007)

    Article  ADS  CAS  Google Scholar 

  78. Boulant, N. et al. Quantum nondemolition readout using a Josephson bifurcation amplifier. Phys. Rev. B 76, 014525 (2007)

    Article  ADS  CAS  Google Scholar 

  79. Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Picot, T., Schouten, R., Harmans, C. J. P. M. & Mooij, J. E. Quantum nondemolition measurement of a superconducting qubit in the weakly projective regime. Phys. Rev. Lett. 105, 040506 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Il'ichev, E. et al. Continuous monitoring of Rabi oscillations in a Josephson flux qubit. Phys. Rev. Lett. 91, 097906 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Zagoskin, A. M., Il'ichev, E., McCutcheon, M. W., Young, J. F. & Nori, F. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  84. Ioffe, L. B. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002)

    Article  CAS  PubMed  Google Scholar 

  85. Gladchenko, S. et al. Superconducting nanocircuits for topologically protected qubits. Nature Phys. 5, 48–53 (2009); published online 30 November 2008.

    Article  ADS  CAS  Google Scholar 

  86. You, J. Q., Shi, X. F., Hu, X. & Nori, F. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010)

    Article  ADS  CAS  Google Scholar 

  87. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  88. Nation, P. D., Blencowe, M. P., Rimberg, A. J. & Buks, E. Analogue Hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 103, 087004 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Simmonds, R. W. et al. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Genovese, M. Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  93. Wei, L. F., Liu, Y. X. & Nori, F. Testing Bell's inequality in a constantly coupled Josephson circuit by effective single-qubit operations. Phys. Rev. B 72, 104516 (2005)

    Article  ADS  CAS  Google Scholar 

  94. Kofman, A. G. & Korotkov, A. N. Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. A 77, 104502 (2008)

    Article  CAS  Google Scholar 

  95. Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  99. Palacios-Laloy, A. et al. Experimental violation of a Bell's inequality in time with weak measurement. Nature Phys. 6, 442–447 (2010)

    Article  ADS  CAS  Google Scholar 

  100. Wei, L. F., Maruyama, K., Wang, X. B., You, J. Q. & Nori, F. Testing quantum contextuality with macroscopic superconducting circuits. Phys. Rev. B 81, 174513 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Ashhab for comments on the manuscript. J.Q.Y. acknowledges partial support from the National Basic Research Program of China (grant no. 2009CB929300), the National Natural Science Foundation of China (grant no.10625416), the ISTCP (grant no. 2008DFA01930) and the MOE of China (grant no. B06011). F.N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, the National Science Foundation (grant no. 0726909), JSPS-RFBR (contract no. 09-02-92114), a Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS through its FIRST programme.

Author information

Authors and Affiliations

Authors

Contributions

Both authors developed the framework for the Review, participated in literature review and discussions, and contributed to the writing.

Corresponding authors

Correspondence to J. Q. You or Franco Nori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, J., Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011). https://doi.org/10.1038/nature10122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10122

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing