Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hydrothermal origin for isotopically anomalous cap dolostone cements from south China

Abstract

The release of methane into the atmosphere through destabilization of clathrates is a positive feedback mechanism capable of amplifying global warming trends that may have operated several times in the geological past1,2,3. Such methane release is a hypothesized cause or amplifier for one of the most drastic global warming events in Earth history, the end of the Marinoan ‘snowball Earth’ ice age, 635 Myr ago4,5,6,7. A key piece of evidence supporting this hypothesis is the occurrence of exceptionally depleted carbon isotope signatures (δ13CPDB down to −48‰; ref. 8) in post-glacial cap dolostones (that is, dolostone overlying glacial deposits) from south China; these signatures have been interpreted as products of methane oxidation at the time of deposition5,6,8. Here we show, on the basis of carbonate clumped isotope thermometry, 87Sr/86Sr isotope ratios, trace element content and clay mineral evidence, that carbonates bearing the 13C-depleted signatures crystallized more than 1.6 Myr after deposition of the cap dolostone. Our results indicate that highly 13C-depleted carbonate cements grew from hydrothermal fluids and suggest that their carbon isotope signatures are a consequence of thermogenic methane oxidation at depth. This finding not only negates carbon isotope evidence for methane release during Marinoan deglaciation in south China, but also eliminates the only known occurrence of a Precambrian sedimentary carbonate with highly 13C-depleted signatures related to methane oxidation in a seep environment. We propose that the capacity to form highly 13C-depleted seep carbonates, through biogenic anaeorobic oxidation of methane using sulphate, was limited in the Precambrian period by low sulphate concentrations in sea water9. As a consequence, although clathrate destabilization may or may not have had a role in the exit from the ‘snowball’ state, it would not have left extreme carbon isotope signals in cap dolostones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystallization temperatures (based on Δ 47 measurements) and C and O stable isotope data from various carbonate phases in two samples of the Doushantuo Formation cap dolostone.
Figure 2: Cross-plots of Δ 47 and conventional stable isotope data from the three carbonate phases identified in cap dolostone samples.
Figure 3: Stratigraphic variability in trace element content, 87 Sr/ 86 Sr ratios and degree of chloritization of trioctahedral clay minerals of the lower Doushantuo Formation from the two sections examined in this study.

References

  1. 1

    MacDonald, G. J. Role of methane clathrates in past and future climates. Clim. Change 16, 247–281 (1990)

    ADS  Article  Google Scholar 

  2. 2

    Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    ADS  Article  Google Scholar 

  3. 3

    Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Kennedy, M. J., Christie-Blick, N. & Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Jiang, G. Q., Kennedy, M. J. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Jiang, G. Q., Kennedy, M. J., Christie-Blick, N., Wu, H. C. & Zhang, S. H. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in south China. J. Sedim. Res. 76, 978–995 (2006)

    CAS  Article  Google Scholar 

  7. 7

    Kennedy, M., Mrofka, D. & von der Borch, C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Wang, J. S., Jiang, G. Q., Xiao, S. H., Li, Q. & Wei, Q. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology 36, 347–350 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates; is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Farver, J. R. Oxygen self-diffusion in calcite: dependence on temperature and water fugacity. Earth Planet. Sci. Lett. 121, 575–587 (1994)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Campbell, K. A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 362–407 (2006)

    Article  Google Scholar 

  16. 16

    Maekawa, T. Experimental study on isotopic fractionation in water during gas hydrate formation. Geochem. J. 38, 129–138 (2004)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Bechtel, A., Savin, S. M. & Hoernes, S. Oxygen and hydrogen isotopic composition of clay minerals of the Bahloul Formation in the region of the Bou Grine zinc-lead ore deposit (Tunisia): evidence for fluid-rock interaction in the vicinity of salt dome cap rock. Chem. Geol. 156, 191–207 (1999)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Halverson, G. P., Dudas, F. O., Maloof, A. C. & Bowring, S. A. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 103–129 (2007)

    Article  Google Scholar 

  19. 19

    Sawaki, Y. et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambr. Res. 176, 46–64 (2010)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Jacobsen, S. B. & Kaufman, A. J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 161, 37–57 (1999)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Boles, J. R., Eichhubl, P., Garven, G. & Chen, J. Evolution of a hydrocarbon migration pathway along basin-bounding faults: evidence from fault cement. Bull. Am. Assoc. Petrol. Geol. 88, 947–970 (2004)

    CAS  Google Scholar 

  22. 22

    Machel, H. G., Cavell, P. A. & Patey, K. S. Isotopic evidence for carbonate cementation and recrystallization, and for tectonic expulsion of fluids into the Western Canada Sedimentary Basin. Geol. Soc. Am. Bull. 108, 1108–1119 (1996)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Welhan, J. A. Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198 (1988)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Bristow, T. F. et al. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 106, 13190–13195 (2009)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Meunier, A. Clays (Springer, 2005)

    Google Scholar 

  26. 26

    Chen, D., Wang, J., Qing, H., Yan, D. & Li, R. Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotope constraints. Chem. Geol. 258, 168–181 (2009)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA 103, 15759–15764 (2006)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Kasting, J. F. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Wegener, G. & Boetius, A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes. Biogeosciences 6, 867–876 (2009)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Huntington, K. W. et al. Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44, 1318–1329 (2009)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Swart, P. K., Burns, S. J. & Leder, J. J. Fractionation of the stable isotopes of oxygen and carbon in carbon-dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. 86, 89–96 (1991)

    CAS  Google Scholar 

  34. 34

    Rosenbaum, J. & Sheppard, S. M. F. An isotopic study of siderites, dolomites and ankerites at high-temperatures. Geochim. Cosmochim. Acta 50, 1147–1150 (1986)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Friedman I & O’Neil J. R Compilation of stable isotope fractionation factors of geochemical interest. Prof. Pap. US Geol. Surv. 440-KK, (1977)

  36. 36

    Horita, J. The dolomite problem: oxygen isotope fractionation to elevated temperatures. Geochim. Cosmochim. Acta 72, A391 (2008)

    ADS  Google Scholar 

  37. 37

    Orsini, L. & Remy, J. C. Utilisation du chlorure de cobaltihexammine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Sci. Sol 4, 269–275 (1976)

    Google Scholar 

Download references

Acknowledgements

We thank G. Jiang for guidance in the field and for providing samples, V. Orphan and W. Fischer for discussion and advice, M. Kennedy for supporting fieldwork and use of analytical equipment, and E. Peterman and K. Morrison for laboratory work. C. Ma and M. Anderson are thanked for analytical assistance and advice. This work was supported by an O.K. Earl Postdoctoral fellowship (to T.F.B.), by the NSF EAR and GEG programmes (to J.M.E.), and by INSU (to M.B.). Part of the work of M.B. is IPGP contribution 3138.

Author information

Affiliations

Authors

Contributions

T.F.B. and J.P.G. conceived the study. M.B. carried out clumped and conventional isotope analysis and wrote part of the Supplementary Discussion. J.M.E. provided laboratory facilities for isotope work. A.D. and T.F.B. carried out clay mineral analysis. T.F.B. carried out petrographic work and trace element analysis and wrote the manuscript. All authors discussed results, planned analyses and contributed to the manuscript.

Corresponding author

Correspondence to Thomas F. Bristow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figures 1-7 with legends, Supplementary Tables 1-5 and additional references. (PDF 2909 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bristow, T., Bonifacie, M., Derkowski, A. et al. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474, 68–71 (2011). https://doi.org/10.1038/nature10096

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing