X-ray illumination of the ejecta of supernova 1987A

Subjects

Abstract

When a massive star explodes as a supernova, substantial amounts of radioactive elements—primarily 56Ni, 57Ni and 44Ti—are produced1. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements2. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium3. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of 44Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: HST R-band images.
Figure 2: Light curves of the ejecta in different wavebands.
Figure 3: Evolution of the luminosity from the ejecta in the R and B bands.

References

  1. 1

    Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Fransson, C. & Kozma, C. Radioactivities and nucleosynthesis in SN 1987A. N. Astron. Rev. 46, 487–492 (2002)

    ADS  CAS  Article  Google Scholar 

  3. 3

    McKee, C. F. in Young Supernova Remnants (eds Holt, S. S. & Hwang, U. ) 17–28 (Am. Inst. Phys. Conf. Proc. 565, Springer, 2001)

  4. 4

    Morris, T. & Podsiadlowski, P. The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science 315, 1103–1105 (2007)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gröningsson, P. et al. Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots. Astron. Astrophys. 492, 481–491 (2008)

    ADS  Article  Google Scholar 

  6. 6

    Racusin, J. L. et al. X-ray evolution of SNR 1987A: the radial expansion. Astrophys. J. 703, 1752–1759 (2009)

    ADS  Article  Google Scholar 

  7. 7

    Zanardo, G. et al. Multifrequency radio measurements of supernova 1987A over 22 years. Astrophys. J. 710, 1515–1529 (2010)

    ADS  Article  Google Scholar 

  8. 8

    Dwek, E. et al. Five years of mid-infrared evolution of the remnant of SN 1987A: the encounter between the blast wave and the dusty equatorial ring. Astrophys. J. 722, 425–434 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Timmes, F. X., Woosley, S. E., Hartmann, D. H. & Hoffman, R. D. The production of 44Ti and 60Co in supernovae. Astrophys. J. 464, 332–341 (1996)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Diehl, R. & Timmes, F. X. Gamma-ray line emission from radioactive isotopes in stars and galaxies. Publ. Astron. Soc. Pacif. 110, 637–659 (1998)

    ADS  Article  Google Scholar 

  11. 11

    Shigeyama, T. & Nomoto, K. Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta. Astrophys. J. 360, 242–256 (1990)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Jerkstrand, A., Fransson, C. & Kozma, C. The 44Ti-powered spectrum of SN 1987A. Astron. Astrophys . (in the press); preprint at 〈http://arxiv.org/abs/1103.3653〉 (2011)

  13. 13

    Michael, E. et al. Hubble Space Telescope observations of high-velocity Lyα and Hα emission from supernova remnant 1987A: the structure and development of the reverse shock. Astrophys. J. 593, 809–830 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Smith, N. et al. The reverse shock of SNR 1987A at 18 years after outburst. Astrophys. J. 635, L41–L44 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Heng, K. et al. Evolution of the reverse shock emission from SNR 1987A. Astrophys. J. 644, 959–970 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    France, K. et al. Observing supernova 1987A with the refurbished Hubble Space Telescope. Science 329, 1624–1627 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K. & Iwamoto, K. Radiation hydrodynamics of SN 1987A. I. Global analysis of the light curve for the first 4 months. Astrophys. J. 532, 1132–1149 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Zhekov, S. A., Park, S., McCray, R., Racusin, J. L. & Burrows, D. N. Evolution of the Chandra CCD spectra of SNR 1987A: probing the reflected-shock picture. Mon. Not. R. Astron. Soc. 721, 518–529 (2010)

    Google Scholar 

  19. 19

    Woosley, S. E., Hartmann, D. & Pinto, P. A. Hard emission at late times from SN 1987A. Astrophys. J. 346, 395–404 (1989)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Graves, G. J. M. et al. Limits from the Hubble Space Telescope on a point source in SN 1987A. Astrophys. J. 629, 944–959 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kjær, K., Leibundgut, B., Fransson, C., Jerkstrand, A. & Spyromilio, J. The 3-D structure of SN 1987A’s inner ejecta. Astron. Astrophys. 517, A51–A60 (2010)

    ADS  Article  Google Scholar 

  22. 22

    Chugai, N. N., Chevalier, R. A., Kirshner, R. P. & Challis, P. M. Hubble Space Telescope spectrum of SN 1987A at an age of 8 years: radioactive luminescence of cool gas. Astrophys. J. 483, 925–940 (1997)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lucy, L. B., Danziger, I. J., Gouiffes, C. & Bouchet, P. in Supernovae (ed. Woosley, S. E.) 82–94 (Springer, 1991)

    Google Scholar 

  24. 24

    Wooden, D. H. et al. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns: time history of the dust continuum and line emission. Astrophys. J. 88 (suppl.). 477–507 (1993)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council and the Swedish National Space Board. Support for the HST observing programme was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.

Author information

Affiliations

Authors

Contributions

J.L. carried out the data reduction and analysis together with G.Ö., P.G., B.L., J.S. and P.C.; C.F. performed the theoretical modelling together with A.J. and C.K.; and J.L. and C.F. wrote the paper. R.P.K. is the principal investigator for the HST/SAINTS collaboration. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to J. Larsson or C. Fransson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text 1-4, Supplementary Figures 1-7 with legends, Supplementary Table 1 and additional references. (PDF 826 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Larsson, J., Fransson, C., Östlin, G. et al. X-ray illumination of the ejecta of supernova 1987A. Nature 474, 484–486 (2011). https://doi.org/10.1038/nature10090

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.