Letter | Published:

Observation of the antimatter helium-4 nucleus

Nature volume 473, pages 353356 (19 May 2011) | Download Citation

  • An Erratum to this article was published on 22 June 2011

Abstract

High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang1; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (), also known as the anti-α (), consists of two antiprotons and two antineutrons (baryon number B = −4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level2. Antimatter nuclei with B < −1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon3,4,5. Here we report the observation of , the heaviest observed antinucleus to date. In total, 18 counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 109 recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon–nucleon pair. The yield is consistent with expectations from thermodynamic7 and coalescent nucleosynthesis8 models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of in cosmic radiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extragalactic nebulae [in French]. Ann. Soc. Sci. Brux. 47, 49–55 (1927)

  2. 2.

    , & Cosmic rays, VII. Individual element spectra: prediction and data. Astron. Astrophys. 330, 389–398 (1998)

  3. 3.

    et al. Mass dependence of light-nucleus production in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 83, 5431–5434 (1999)

  4. 4.

    Production of Meson, Baryon and Light Nuclei (A = 2,3): Investigating Freeze-Out Dynamics and Roles of Energetic Quarks and Gluons in Au+Au Collisions at RHIC. PhD thesis, Univ. Sci. Technol. China. (2007)

  5. 5.

    , , & Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203–207 (2011)

  6. 6.

    , & The relativistic heavy ion collider project: RHIC and its detectors. Nucl. Instrum. Methods Phys. Res. A 499, 235–244 (2003)

  7. 7.

    & The quest for the quark-gluon plasma. Nature 448, 302–309 (2007)

  8. 8.

    & On the coalescence model for high energy nuclear reactions. Phys. Lett. B 98, 153–157 (1981)

  9. 9.

    The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)

  10. 10.

    The positive electron. Phys. Rev. 43, 491–494 (1933)

  11. 11.

    , , & Observation of antiprotons. Phys. Rev. 100, 947–950 (1955)

  12. 12.

    , , & Antineutrons produced from antiprotons in charge-exchange collisions. Phys. Rev. 104, 1193–1197 (1956)

  13. 13.

    , , , & Experimental observation of antideuteron production. Nuovo Cim. 39, 10–14 (1965)

  14. 14.

    , , , & Observation of antideuterons. Phys. Rev. Lett. 14, 1003–1006 (1965)

  15. 15.

    et al. Observation of antitritium [in Russian]. Yad. Fiz. 20, 694–708 (1974)

  16. 16.

    et al. Observation of antihelium3 [in Russian]. Yad. Fiz. 12, 311–322 (1970)

  17. 17.

    et al. Production of antihydrogen. Phys. Lett. B 368, 251–258 (1996)

  18. 18.

    et al. Observation of an antimatter hypernucleus. Science 328, 58–62 (2010)

  19. 19.

    Abnormal nuclear states and vacuum excitation. Rev. Mod. Phys. 47, 267–275 (1975)

  20. 20.

    . RHIC white papers. Nucl. Phys. A 757, Issues 1–2. 1–283 (2005)

  21. 21.

    , , & Formation of antimatter clusters in the hadronization phase transition. J. Phys. G 12, 1237–1263 (1986)

  22. 22.

    & Deuterons from high-energy proton bombardment of matter. Phys. Rev. Lett. 7, 69–71 (1961)

  23. 23.

    et al. The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 499, 659–678 (2003)

  24. 24.

    et al. A single time-of-flight tray based on multigap resistive plate chambers for the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 508, 181–184 (2003)

  25. 25.

    A method to improve tracking and particle identification in TPCs and silicon detectors. Nucl. Instrum. Methods Phys. Res. A 562, 154–197 (2006)

  26. 26.

    Light (Anti)Nuclei Production in the STAR Experiment at RHIC. Ph.D. thesis, Rice Univ. (2009)

  27. 27.

    et al. Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051901(R) (2009)

  28. 28.

    et al. STAR Collaboration. Yields and elliptic flow of d (d̄) and 3He () in Au + Au collisions at √sNN = 200 GeV. Preprint at 〈〉 (2009)

  29. 29.

    On the extension of the periodic system into the sectors of strangeness and antimatter. Int. J. Mod. Phys. E 5, 1–90 (1996)

  30. 30.

    et al. An antimatter spectrometer in space. Nucl. Instrum. Methods Phys. Res. A 350, 351–367 (1994)

Download references

Acknowledgements

We thank the RHIC Operations Group and RACF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence ‘Origin and Structure of the Universe’ of Germany, CNRS/IN2P3, FAPESP CNPq of Brazil, the Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST and CSIR of India, the Polish Ministry of Science and Higher Education, the Korea Research Foundation, the Ministry of Science, Education and Sports of Croatia, and RosAtom of Russia.

Correspondence and requests for materials should be addressed to The Star Collaboration (star-antihe4-l@lists.bnl.gov).

Author information

Author notes

    • W. A. Love
    • , C. Whitten Jr
    •  & R. Zoulkarneev

    Deceased

Affiliations

  1. Joint Institute for Nuclear Research, Dubna, 141 980, Russia.

    • H. Agakishiev
    • , A. V. Alakhverdyants
    • , G. S. Averichev
    • , I. Bunzarov
    • , T. G. Dedovich
    • , L. G. Efimov
    • , J. Fedorisin
    • , P. Filip
    • , A. Kechechyan
    • , V. Kizka
    • , R. Lednicky
    • , Y. Panebratsev
    • , O. V. Rogachevskiy
    • , E. Shahaliev
    • , M. Tokarev
    • , S. Vokal
    • , R. Zoulkarneev
    •  & Y. Zoulkarneeva.
  2. Panjab University, Chandigarh 160014, India.

    • M. M. Aggarwal
    • , A. K. Bhati
    •  & N. K. Pruthi
  3. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

    • Z. Ahammed
    • , X. Dong
    • , O. G. Grebenyuk
    • , E. Hjort
    • , P. Jacobs
    • , J. Kiryluk
    • , S. R. Klein
    • , H. Masui
    • , H. S. Matis
    • , M. Naglis
    • , G. Odyniec
    • , D. Olson
    • , M. A. Ploskon
    • , J. Porter
    • , A. M. Poskanzer
    • , C. B. Powell
    • , H. G. Ritter
    • , I. Sakrejda
    • , A. M. Schmah
    • , E. P. Sichtermann
    • , X. M. Sun
    • , T. J. M. Symons
    • , J. H. Thomas
    • , H. Wieman
    • , N. Xu
    •  & Y. Zhang
  4. Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia.

    • I. Alekseev
    • , I. G. Bordyuzhin
    • , L. Koroleva
    • , B. Morozov
    •  & D. N. Svirida
  5. Kent State University, Kent, Ohio 44242, USA.

    • J. Alford
    • , B. D. Anderson
    • , J. Bouchet
    • , J. Joseph
    • , D. Keane
    • , L. Kumar
    • , S. Margetis
    • , Y. Pandit
    • , N. L. Subba
    • , J. A. Vanfossen Jr
    •  & W. M. Zhang
  6. Ohio State University, Columbus, Ohio 43210, USA.

    • C. D. Anson
    • , Z. Chajecki
    • , T. J. Humanic
    •  & M. A. Lisa
  7. Brookhaven National Laboratory, Upton, New York 11973, USA.

    • D. Arkhipkin
    • , D. R. Beavis
    • , L. C. Bland
    • , T. P. Burton
    • , W. Christie
    • , R. R. Debbe
    • , L. Didenko
    • , J. C. Dunlop
    • , V. Fine
    • , Y. Fisyak
    • , A. Gordon
    • , W. Guryn
    • , M. A. C. Lamont
    • , J. M. Landgraf
    • , J. Lauret
    • , A. Lebedev
    • , J. H. Lee
    • , M. J. LeVine
    • , T. Ljubicic
    • , R. S. Longacre
    • , W. A. Love
    • , M. K. Mitrovski
    • , A. Ogawa
    • , P. Pile
    • , L. Ruan
    • , P. Sorensen
    • , A. H. Tang
    • , T. Ullrich
    • , G. Van Buren
    • , F. Videbaek
    • , J. C. Webb
    • , Z. Xu
    •  & K. Yip
  8. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

    • J. Balewski
    • , M. J. Betancourt
    • , R. Corliss
    • , J. P. Hays-Wehle
    • , W. Leight
    • , R. Milner
    • , R. Redwine
    • , J. Seele
    • , S. G. Steadman
    • , B. Surrow
    • , G. van Nieuwenhuizen
    •  & M. Walker
  9. Indian Institute of Technology, Mumbai 400076, India.

    • N. K. Behera
    • , B. K. Nandi
    • , P. R. Pujahari
    • , A. Sarkar
    •  & R. Varma
  10. University of Houston, Houston, Texas 77204, USA.

    • R. Bellwied
    • , L. C. De Silva
    •  & A. R. Timmins
  11. University of Illinois at Chicago, Chicago, Illinois 60607, USA.

    • R. R. Betts
    • , O. Evdokimov
    • , D. J. Hofman
    • , K. Kauder
    • , H. Pei
    •  & M. C. Suarez
  12. University of Jammu, Jammu 180001, India.

    • A. Bhasin
    • , S. M. Dogra
    • , A. Gupta
    • , S. Gupta
    •  & B. V. K. S. Potukuchi
  13. University of Washington, Seattle, Washington 98195, USA.

    • H. Bichsel
    • , J. G. Cramer
    • , D. Kettler
    • , D. Prindle
    •  & T. A. Trainor
  14. Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic.

    • J. Bielcik
    • , O. Hajkova
    • , M. Krus
    •  & M. Pachr
  15. Nuclear Physics Institute AS CR, 250 68 Rˇezˇ/Prague, Czech Republic.

    • J. Bielcikova
    • , P. Chaloupka
    • , P. Chung
    • , J. Kapitan
    • , V. Kouchpil
    • , J. Rusnak
    • , M. Sumbera
    •  & D. Tlusty
  16. University of California, Los Angeles, California 90095, USA.

    • B. Biritz
    • , R. Cendejas
    • , D. R. Gangadharan
    • , S. M. Guertin
    • , H. Z. Huang
    • , G. Igo
    • , P. Kurnadi
    • , N. Shah
    • , D. Staszak
    • , S. Trentalange
    • , O. D. Tsai
    • , G. Wang
    • , C. Whitten Jr
    • , W. Xu
    •  & F. Zhao
  17. SUBATECH, Nantes 44307, France.

    • W. Borowski
    • , M. Estienne
    •  & S. Kabana
  18. NIKHEF and Utrecht University, Amsterdam 1098 XG, The Netherlands.

    • E. Braidot
    •  & T. Peitzmann
  19. Moscow Engineering Physics Institute, Moscow 115409, Russia.

    • A. V. Brandin
    • , L. Kotchenda
    • , P. Kravtsov
    • , E. V. Lukashov
    • , V. Okorokov
    •  & M. Strikhanov
  20. Argonne National Laboratory, Argonne, Illinois 60439, USA.

    • A. Bridgeman
    • , K. Krueger
    • , H. M. Spinka
    •  & D. G. Underwood
  21. University of California, Davis, California 95616, USA.

    • S. G. Brovko
    • , M. Calderon
    • , D. Cebra
    • , J. E. Draper
    • , B. Haag
    • , H. Liu
    • , O. I. Mall
    • , R. Reed
    • , J. L. Romero
    • , S. Salur
    •  & E. Sangaline
  22. Yale University, New Haven, Connecticut 06520, USA.

    • E. Bruna
    • , H. Caines
    • , A. Chikanian
    • , E. Finch
    • , J. W. Harris
    • , M. Heinz
    • , A. G. Knospe
    • , R. Majka
    • , A. Ohlson
    • , J. Putschke
    • , J. Sandweiss
    •  & N. Smirnov
  23. Old Dominion University, Norfolk, Virginia 23529, USA.

    • S. Bueltmann
    • , I. Koralt
    •  & D. Plyku
  24. Shanghai Institute of Applied Physics, Shanghai 201800, China.

    • X. Z. Cai
    • , J. H. Chen
    • , L-X. Han
    • , F. Jin
    • , W. Li
    • , G. L. Ma
    • , Y. G. Ma
    • , Q. Y. Shou
    • , J. Tian
    • , L. Xue
    • , S. Zhang
    • , J. Zhao
    • , C. Zhong
    •  & Y. H. Zhu
  25. Texas A&M University, College Station, Texas 77843, USA.

    • M. C. Cervantes
    • , M. J. M. Codrington
    • , P. Djawotho
    • , J. L. Drachenberg
    • , C. A. Gagliardi
    • , A. Hamed
    • , L. Huo
    • , S. Mioduszewski
    • , Y. Mohammed
    •  & R. E. Tribble
  26. Variable Energy Cyclotron Centre, Kolkata 700064, India.

    • S. Chattopadhyay
    • , P. Ghosh
    • , B. Mohanty
    • , M. M. Mondal
    • , T. K. Nayak
    • , S. K. Pal
    • , N. R. Sahoo
    • , R. N. Singaraju
    • , P. Tribedy
    •  & Y. P. Viyogi
  27. University of Science & Technology of China, Hefei 230026, China.

    • H. F. Chen
    • , B. Huang
    • , C. Li
    • , Y. Lu
    • , X. Luo
    • , M. Shao
    • , Y. Sun
    • , Z. Tang
    • , X. L. Wang
    • , Y. Xu
    •  & Z. P. Zhang
  28. Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China.

    • J. Y. Chen
    • , L. Chen
    • , H. W. Ke
    • , N. Li
    • , Z. M. Li
    • , F. Liu
    • , S. S. Shi
    • , Y. F. Wu
    • , N. Xu
    • , Y. Yang
    •  & J. B. Zhang
  29. Tsinghua University, Beijing 100084, China.

    • J. Cheng
    • , K. Kang
    • , Y. Li
    • , Y. Wang
    • , Z. Xiao
    • , X. P. Zhang
    •  & X. Zhu
  30. Creighton University, Omaha, Nebraska 68178, USA.

    • M. Cherney
    • , Y. N. Gorbunov
    • , T. S. McShane
    •  & J. Seger
  31. Pusan National University, Pusan 609-735, South Korea.

    • K. E. Choi
    • , K. Oh
    •  & I-K. Yoo
  32. University of California, Berkeley, California 94720, USA.

    • H. J. Crawford
    • , J. Engelage
    • , E. G. Judd
    •  & C. Perkins
  33. University of Texas, Austin, Texas 78712, USA.

    • A. Davila Leyva
    • , G. W. Hoffmann
    • , L. Li
    • , C. Markert
    • , E. W. Oldag
    • , R. L. Ray
    • , J. Schambach
    • , D. Thein
    •  & M. Wada
  34. Institute of High Energy Physics, Protvino 142281, Russia.

    • A. A. Derevschikov
    • , Yu. A. Matulenko
    • , A. Meschanin
    • , N. G. Minaev
    • , D. A. Morozov
    • , L. V. Nogach
    • , S. B. Nurushev
    •  & A. N. Vasiliev
  35. Universidade Estadual de Campinas, Sao Paulo 13083-859, Brazil.

    • R. Derradi de Souza
    • , J. Takahashi
    •  & G. M. S. Vasconcelos
  36. Wayne State University, Detroit, Michigan 48201, USA.

    • M. Elnimr
    • , S. LaPointe
    • , C. Pruneau
    • , M. Sharma
    • , L. H. Tarini
    •  & S. A. Voloshin
  37. Rice University, Houston, Texas 77251, USA.

    • G. Eppley
    • , F. Geurts
    • , J. Liu
    • , W. J. Llope
    • , D. McDonald
    • , J. B. Roberts
    •  & P. Yepes
  38. Pennsylvania State University, University Park, Pennsylvania 16802, USA.

    • L. Eun
    •  & S. Heppelmann
  39. University of Kentucky, Lexington, Kentucky, 40506-0055, USA.

    • R. Fatemi
    • , R. G. Fersch
    • , W. Korsch
    • , G. Webb
    •  & W. Witzke
  40. Valparaiso University, Valparaiso, Indiana 46383, USA.

    • D. Grosnick
    • , D. D. Koetke
    • , R. Manweiler
    •  & T. D. S. Stanislaus
  41. Purdue University, West Lafayette, Indiana 47907, USA.

    • A. Hirsch
    • , D. P. Kikola
    • , J. Konzer
    • , X. Li
    • , M. K. Mustafa
    • , P. K. Netrakanti
    • , R. P. Scharenberg
    • , M. J. Skoby
    • , B. Srivastava
    • , B. Stringfellow
    • , F. Wang
    • , Q. Wang
    •  & W. Xie
  42. Indiana University, Bloomington, Indiana 47408, USA.

    • W. W. Jacobs
    • , B. S. Page
    • , I. Selyuzhenkov
    • , J. R. Stevens
    •  & S. W. Wissink
  43. Institute of Physics, Bhubaneswar 751005, India.

    • C. Jena
    •  & D. P. Mahapatra
  44. Warsaw University of Technology, Warsaw 00-661, Poland.

    • A. Kisiel
    • , T. Pawlak
    • , W. Peryt
    • , J. Pluta
    • , M. Zawisza
    •  & H. Zbroszczyk
  45. University of Frankfurt, Frankfurt 60325, Germany.

    • T. Kollegger
    • , T. R. Schuster
    •  & R. Stock
  46. Shandong University, Jinan, Shandong 250100, China.

    • X. Li
    • , Q. H. Xu
    •  & W. Zhou
  47. Universidade de Sao Paulo, Sao Paulo 05508-090, Brazil.

    • M. G. Munhoz
    • , A. A. P. Suaide
    •  & A. Szanto de Toledo
  48. University of Zagreb, Zagreb, HR-10002, Croatia.

    • M. Planinic
    •  & N. Poljak
  49. Institute of Modern Physics, Lanzhou 730000, China.

    • H. Qiu
    • , Z. Sun
    • , J. S. Wang
    • , H. Xu
    • , Y. Yang
    •  & W. Zhan
  50. University of Rajasthan, Jaipur 302004, India.

    • R. Raniwala
    • , S. Raniwala
    •  & D. Solanki
  51. Max-Planck-Institut für Physik, Munich 80805, Germany.

    • N. Schmitz
    • , P. Seyboth
    •  & F. Simon
  52. Michigan State University, East Lansing, Michigan 48824, USA.

    • T. Tarnowsky
    • , H. Wang
    •  & G. D. Westfall
  53. United States Naval Academy, Annapolis, Maryland 21402, USA.

    • R. Witt

Consortia

  1. The STAR Collaboration

Authors

    Contributions

    All authors contributed equally.

    Competing interests

    The author declare no competing financial interests.

    About this article

    Publication history

    Received

    Accepted

    Published

    DOI

    https://doi.org/10.1038/nature10079

    Further reading

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.