Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria


Dimethylsulphoniopropionate (DMSP) accounts for up to 10% of carbon fixed by marine phytoplankton in ocean surface waters1,2, producing an estimated 11.7–103 Tmol S per year3, most of which is processed by marine bacteria through the demethylation/demethiolation pathway4. This pathway releases methanethiol (MeSH) instead of the climatically active gas dimethylsulphide (DMS) and enables marine microorganisms to assimilate the reduced sulphur5,6,7. Despite recognition of this critical microbial transformation for over two decades, the biochemical pathway and enzymes responsible have remained unidentified. Here we show that three new enzymes related to fatty acid β-oxidation constitute the pathway that assimilates methylmercaptopropionate (MMPA), the first product of DMSP demethylation/demethiolation, and that two previously unknown coenzyme A (CoA) derivatives, 3-methylmercaptopropionyl-CoA (MMPA-CoA) and methylthioacryloyl-CoA (MTA-CoA), are formed as novel intermediates. A member of the marine roseobacters, Ruegeria pomeroyi DSS-3, requires the MMPA-CoA pathway for MMPA assimilation and MeSH production. This pathway and the ability to produce MeSH from MMPA are present in diverse bacteria, and the ubiquitous SAR11 clade bacterium Pelagibacter ubique possesses enzymes for at least the first two steps. Analysis of marine metagenomic data indicates that the pathway is widespread among bacterioplankton in the ocean surface waters, making it one of the most important known routes for acquisition of reduced carbon and sulphur by surface ocean heterotrophs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathway of DMSP demethylation as identified in R. pomeroyi DSS-3.
Figure 2: Phylogenetic tree of DmdC from representative bacteria.

Similar content being viewed by others


  1. Archer, S. D., Widdicombe, C. E., Tarran, G. A., Rees, A. P. & Burkill, P. H. Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea. Aquat. Microb. Ecol. 24, 225–241 (2001)

    Article  Google Scholar 

  2. Simó, R., Archer, S. D., Pedros-Alio, C., Gilpin, L. & Stelfox-Widdicombe, C. E. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 47, 53–61 (2002)

    Article  ADS  Google Scholar 

  3. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000)

    Article  ADS  CAS  Google Scholar 

  5. van Duyl, F. C., Gieskes, W. W. C., Kop, A. J. & Lewis, W. E. Biological control of short-term variations in the concentration of DMSP and DMS during a Phaeocystis spring bloom. J. Sea Res. 40, 221–231 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Ledyard, K. M. & Dacey, J. W. H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnol. Oceanogr. 41, 33–40 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Kiene, R. P., Linn, L. J., Gonzalez, J., Moran, M. A. & Bruton, J. A. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65, 4549–4558 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Andreae, M. O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29 (1990)

    Article  CAS  Google Scholar 

  9. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987)

    Article  ADS  CAS  Google Scholar 

  10. Todd, J. D. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Curson, A. R. J., Rogers, R., Todd, J. D., Brearley, C. A. & Johnston, A. W. B. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides . Environ. Microbiol. 10, 1099 (2008)

    Article  CAS  Google Scholar 

  12. Todd, J. D., Curson, A. R., Dupont, C. L., Nicholson, P. & Johnston, A. W. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ. Microbiol. 11, 1376–1385 (2009)

    Article  CAS  Google Scholar 

  13. Todd, J. D. et al. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ. Microbiol. 13, 427–438 (2010)

    Article  Google Scholar 

  14. Howard, E. C., Sun, S. L., Biers, E. J. & Moran, M. A. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ. Microbiol. 10, 2397–2410 (2008)

    Article  CAS  Google Scholar 

  15. Kiene, R. P. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar. Chem. 54, 69–83 (1996)

    Article  CAS  Google Scholar 

  16. Taylor, B. F. & Gilchrist, D. C. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl. Environ. Microbiol. 57, 3581–3584 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiene, R. P. & Taylor, B. F. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 54, 2208–2212 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, B. F. & Visscher, P. T. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P., Kirst, G. O., Keller, M. D. & Visscher, P. T. ) Ch. 23, 265–276 (Springer-Verlag, 1996)

    Book  Google Scholar 

  19. Bentley, R. & Chasteen, T. G. Environmental VOSCs–formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 55, 291–317 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Myers, R. W., Wray, J. W., Fish, S. & Abeles, R. H. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond-cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae . J. Biol. Chem. 268, 24785–24791 (1993)

    CAS  PubMed  Google Scholar 

  22. Gonzalez, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria . Appl. Environ. Microbiol. 65, 3810–3819 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5, e77 (2007)

    Article  Google Scholar 

  24. Todd, J. D. et al. Molecular dissection of bacterial acrylate catabolism – unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343 (2009)

    Article  Google Scholar 

  25. Reisch, C. R., Moran, M. A. & Whitman, W. B. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi . J. Bacteriol. 190, 8018–8024 (2008)

    Article  CAS  Google Scholar 

  26. Gonzalez, J. M. et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. Syst. Evol. Microbiol. 53, 1261–1269 (2003)

    Article  CAS  Google Scholar 

  27. Deutsch, J., Grange, E., Rapoport, S. I. & Purdon, A. D. Isolation and quantitation of long-chain acyl-coenzyme-A esters in brain-tissue by solid-phase extraction. Anal. Biochem. 220, 321–323 (1994)

    Article  CAS  Google Scholar 

  28. Venkateswaran, A. et al. Physiologic determinants of radiation resistance in Deinococcus radiodurans . Appl. Environ. Microbiol. 66, 2620–2626 (2000)

    Article  CAS  Google Scholar 

  29. Bretscher, A. P. & Kaiser, D. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133, 763–768 (1978)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bell, R. P. & Higginson, W. C. E. The catalyzed dehydration of acetaldehyde hydrate, and the effect of structure on the velocity of protolytic reactions. Proc. R. Soc. Lond. A 197, 141–159 (1949)

    Article  ADS  CAS  Google Scholar 

  31. Gupta, N. K. A study of formaldehyde dismutation by liver alcohol dehydrogenase with NAD+-analogs. Arch. Biochem. Biophys. 141, 632–640 (1970)

    Article  CAS  Google Scholar 

  32. Stadtman, E. R. Preparation and assay of acyl coenzyme-A and other thiol esters - use of hydroxylamine. Methods Enzymol. 3, 931–941 (1957)

    Article  Google Scholar 

  33. Chambers, S. T., Kunin, C. M., Miller, D. & Hamada, A. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli . J. Bacteriol. 169, 4845–4847 (1987)

    Article  CAS  Google Scholar 

  34. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods 4, 251–256 (2007)

    Article  CAS  Google Scholar 

  35. Henriksen, J. R. Physiology of dimethylsulfoniopropionate metabolism in a model marine Roseobacter, Silicibacter pomeroyi. PhD thesis, Univ. Georgia. (2008)

    Google Scholar 

  36. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197 (1988)

    Article  CAS  Google Scholar 

  37. Koch, A. L. in Methods for general and molecular bacteriology (eds Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ) 248–277 (American Society for Microbiology, 1994)

    Google Scholar 

  38. Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the bacterial cell: a molecular approach. (Sinauer Associates, 1990)

    Google Scholar 

Download references


We thank G. Wylie for assistance with NMR spectroscopy, S. Sharma, S. Sun and H. Luo for bioinformatics assistance, S. Gifford for technical advice, C. Smith and W. Crabb for technical assistance, and C. English for assistance with graphics. Funding for this research was provided by the National Science Foundation (MCB-0702125 and OCE-0724017) and the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations



C.R.R. performed growth experiments, enzyme assays, protein purifications, substrate synthesis, phylogenetic analysis, and all reaction analysis except MALDI-FT-ICR. M.J.S. and I.J.A. performed MALDI-FT-ICR analysis. C.R.R. and V.A.V. performed genetic modifications of R. pomeroyi DSS-3. V.A.V. performed RT-qPCR. C.R.R. and M.A.M. conducted bioinformatic analyses. C.R.R., M.A.M. and W.B.W. designed the experiments and wrote the paper. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to William B. Whitman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 with legends, Supplementary Tables 1-7 and an additional reference. (PDF 1455 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisch, C., Stoudemayer, M., Varaljay, V. et al. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473, 208–211 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing