Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolite-enabled eradication of bacterial persisters by aminoglycosides


Bacterial persistence is a state in which a sub-population of dormant cells, or ‘persisters’, tolerates antibiotic treatment1,2,3,4. Bacterial persisters have been implicated in biofilms and in chronic and recurrent infections5,6,7. Despite this clinical relevance, there are currently no viable means for eradicating persisters. Here we show that specific metabolic stimuli enable the killing of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) persisters with aminoglycosides. This potentiation is aminoglycoside-specific, it does not rely on growth resumption and it is effective in both aerobic and anaerobic conditions. It proceeds by the generation of a proton-motive force which facilitates aminoglycoside uptake. Our results demonstrate that persisters, although dormant, are primed for metabolite uptake, central metabolism and respiration. We show that aminoglycosides can be used in combination with specific metabolites to treat E. coli and S. aureus biofilms. Furthermore, we demonstrate that this approach can improve the treatment of chronic infections in a mouse urinary tract infection model. This work establishes a strategy for eradicating bacterial persisters that is based on metabolism, and highlights the importance of the metabolic environment to antibiotic treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific metabolites enable killing of E. coli persisters by aminoglycosides.
Figure 2: Metabolite-enabled aminoglycoside uptake and bacterial killing requires PMF produced by the oxidative electron transport chain.
Figure 3: Mechanism for metabolite-enabled eradication of persisters (a) and clinically relevant experiments (b–d).
Figure 4: Fructose induces PMF-dependent killing of S. aureus persisters by an aminoglycoside.

Similar content being viewed by others


  1. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Gefen, O., Gabay, C., Mumcuoglu, M., Engel, G. & Balaban, N. Q. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc. Natl Acad. Sci. USA 105, 6145–6149 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Gefen, O. & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 33, 704–717 (2009)

    Article  CAS  Google Scholar 

  4. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007)

    Article  CAS  Google Scholar 

  5. Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature Chem. Biol. 3, 549–556 (2007)

    Article  CAS  Google Scholar 

  6. Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nature Rev. Microbiol. 4, 556–562 (2006)

    Article  CAS  Google Scholar 

  7. Dhar, N. & McKinney, J. D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10, 30–38 (2007)

    Article  CAS  Google Scholar 

  8. Shah, D. et al. Persisters: a distinct physiological state of E. coli . BMC Microbiol. 6, 53 (2006)

    Article  Google Scholar 

  9. Vakulenko, S. B. & Mobashery, S. Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev. 16, 430–450 (2003)

    Article  CAS  Google Scholar 

  10. Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005)

    Article  CAS  Google Scholar 

  11. Davis, B. D. Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev. 51, 341–350 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weisblum, B. & Davies, J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 32, 493–528 (1968)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008)

    Article  CAS  Google Scholar 

  14. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli . J. Bacteriol. 186, 8172–8180 (2004)

    Article  CAS  Google Scholar 

  15. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001)

    Article  CAS  Google Scholar 

  16. Taber, H. W., Mueller, J. P., Miller, P. F. & Arrow, A. S. Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 51, 439–457 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bryan, L. E. & Kwan, S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob. Agents Chemother. 23, 835–845 (1983)

    Article  CAS  Google Scholar 

  18. Hill, S., Viollet, S., Smith, A. T. & Anthony, C. Roles for enteric d-type cytochrome oxidase in N2 fixation and microaerobiosis. J. Bacteriol. 172, 2071–2078 (1990)

    Article  CAS  Google Scholar 

  19. Govantes, F., Albrecht, J. A. & Gunsalus, R. P. Oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon: roles of multiple promoters and the Fnr-1 and Fnr-2 binding sites. Mol. Microbiol. 37, 1456–1469 (2000)

    Article  CAS  Google Scholar 

  20. Walters, M. C., III, Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323 (2003)

    Article  CAS  Google Scholar 

  21. Mates, S. M. et al. Membrane potential and gentamicin uptake in Staphylococcus aureus . Proc. Natl Acad. Sci. USA 79, 6693–6697 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Fraimow, H. S., Greenman, J. B., Leviton, I. M., Dougherty, T. J. & Miller, M. H. Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP. J. Bacteriol. 173, 2800–2808 (1991)

    Article  CAS  Google Scholar 

  23. Dwyer, D. J., Kohanski, M. A., Hayete, B. & Collins, J. J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli . Mol. Syst. Biol. 3, 91 (2007)

    Article  Google Scholar 

  24. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007)

    Article  CAS  Google Scholar 

  25. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004)

    Article  CAS  Google Scholar 

  26. Hansen, S., Lewis, K. & Vulic, M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli . Antimicrob. Agents Chemother. 52, 2718–2726 (2008)

    Article  CAS  Google Scholar 

  27. Sandoval, R., Leiser, J. & Molitoris, B. A. Aminoglycoside antibiotics traffic to the Golgi complex in LLC-PK1 cells. J. Am. Soc. Nephrol. 9, 167–174 (1998)

    CAS  PubMed  Google Scholar 

  28. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Majerczyk, C. D. et al. Direct targets of CodY in Staphylococcus aureus . J. Bacteriol. 192, 2861–2877 (2010)

    Article  CAS  Google Scholar 

  30. Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003)

    Article  Google Scholar 

Download references


We thank A. Slee and T. Murphy from ViviSource Laboratories for assistance with the in vivo mouse studies and T. K. Lu for guidance with the biofilm experiments. This work was supported by the NIH Director’s Pioneer Award Program and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations



All authors designed the study, analysed results and wrote the manuscript. Experiments were performed by K.R.A. and M.P.B.

Corresponding author

Correspondence to James J. Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, additional references, Supplementary Figures 1-27 with legends and Supplementary Tables 1-3. (PDF 1889 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allison, K., Brynildsen, M. & Collins, J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing