Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A graphene-based broadband optical modulator

Abstract

Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects1,2. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties3. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms4,5,6. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances7. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1 GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6 µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25 µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A graphene-based waveguide-integrated optical modulator.
Figure 2: Static electro-optical response of the device at different drive voltages.
Figure 3: Dynamic electro-optical response of the device.
Figure 4: Spectrum characterization of the optical modulator.

References

  1. Miller, D. A. B. Are optical transistors the logical next step? Nature Photon. 4, 3–5 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Liu, A. S. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Kuo, Y. H. et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures — the quantum-confined Stark-effect. Phys. Rev. Lett. 53, 2173–2176 (1984)

    Article  ADS  CAS  Google Scholar 

  7. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Novoselov, K. S. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Schwierz, F. Graphene transistors. Nature Nanotechnol. 5, 487–496 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2, 605–615 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotechnol. 4, 839–843 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008)

    Article  ADS  Google Scholar 

  20. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotechnol. 3, 491–495 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005)

    Article  ADS  Google Scholar 

  23. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Zhang, Y. B., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nature Phys. 5, 722–726 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Jablan, M., Buljan, H. & Soljacˇic´, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  29. Zhou, S. Y. et al. First direct observation of Dirac fermions in graphite. Nature Phys. 2, 595–599 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Rogers, J. A., Someya, T. & Huang, Y. G. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) for Scalable and Integrated Nano Manufacturing (SINAM) (grant no. CMMI-0751621) and by the US Department of Energy, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) under award DOE DE-AC02-05CH11231. M.L. thanks Y. Rao for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and X.Z. contributed to the experimental ideas. M.L. fabricated device samples. M.L. and X.Y. carried out measurements, analysed the experimental data and prepared the manuscript. B.G., L.J. and F.W. prepared graphene film. All authors contributed to discussions and manuscript revision.

Corresponding authors

Correspondence to Feng Wang or Xiang Zhang.

Ethics declarations

Competing interests

International patent applications may be affected by the paper.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, M., Yin, X., Ulin-Avila, E. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). https://doi.org/10.1038/nature10067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10067

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing