Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors


Among ion channels, only the nicotinic-receptor superfamily has evolved to generate both cation- and anion-selective members. Although other, structurally unrelated, neurotransmitter-gated cation channels exist, no other type of neurotransmitter-gated anion channel, and thus no other source of fast synaptic inhibitory signals, has been described so far. In addition to the seemingly straightforward electrostatic effect of the presence (in the cation-selective members) or absence (in the anion-selective ones) of a ring of pore-facing carboxylates, mutational studies have identified other features of the amino-acid sequence near the intracellular end of the pore-lining transmembrane segments (M2) that are also required to achieve the high charge selectivity shown by native channels1,2,3,4,5,6,7,8,9,10. However, the mechanism underlying this more subtle effect has remained elusive11 and a subject of speculation. Here we show, using single-channel electrophysiological recordings to estimate the protonation state of native ionizable side chains, that anion-selective-type sequences favour whereas cation-selective-type sequences prevent the protonation of the conserved, buried basic residues at the intracellular entrance of the pore (the M2 0′ position). We conclude that the previously unrecognized tunable charge state of the 0′ ring of buried basic side chains is an essential feature of these channels’ versatile charge-selectivity filter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The versatile charge selectivity of nicotinic-type receptors.
Figure 2: A proline mutation unveils a proton-binding site.
Figure 3: The side chain of the 0′ basic residue is the proton-binding site.
Figure 4: Not only prolines, not only insertions.

Change history

  • 23 June 2011

    Fig. 1a was corrected.


  1. 1

    Galzi, J. L. et al. Mutations in the ion channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Corringer, P.-J. et al. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22, 831–843 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R. & Barry, P. H. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J. 79, 247–259 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Gunthorpe, M. J. & Lummis, S. C. R. Conversion of the ion selectivity of the 5-HT3A receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276, 10977–10983 (2001)

    CAS  Article  Google Scholar 

  5. 5

    Jensen, M. L. et al. The β subunit determines the ion selectivity of the GABAA receptor. J. Biol. Chem. 277, 41438–41447 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Keramidas, A., Moorhouse, A. J., Pierce, K. D., Schofield, P. R. & Barry, P. H. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J. Gen. Physiol. 119, 393–410 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Thompson, A. J. & Lummis, S. C. R. A single ring of charged amino acids at one end of the pore can control ion selectivity in the 5-HT3 receptor. Br. J. Pharmacol. 140, 359–365 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Wotring, V. E., Miller, T. S. & Weiss, D. S. Mutations at the GABA receptor selectivity filter: a possible role for effective charges. J. Physiol. (Lond.) 548, 527–540 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Menard, C., Horvitz, H. R. & Cannon, S. Chimeric mutations in the M2 segment of the 5-hydroxytryptamine-gated chloride channel MOD-1 define a minimal determinant of anion/cation permeability. J. Biol. Chem. 280, 27502–27507 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Sunesen, M. et al. Mechanism of Cl selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. J. Biol. Chem. 281, 14875–14881 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86, 161–204 (2004)

    CAS  Article  Google Scholar 

  12. 12

    Cymes, G. D., Ni, Y. & Grosman, C. Probing ion-channel pores one proton at a time. Nature 438, 975–980 (2005)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Cymes, G. D. & Grosman, C. Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer. Nature Struct. Mol. Biol. 15, 389–396 (2008)

    CAS  Article  Google Scholar 

  14. 14

    Krishek, B. J., Moss, S. J. & Smart, T. G. Homomeric β1 γ-aminobutyric acidA receptor-ion channels: evaluation of pharmacological and physiological properties. Mol. Pharmacol. 49, 494–504 (1996)

    CAS  PubMed  Google Scholar 

  15. 15

    Cully, D. F. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans . Nature 371, 707–711 (1994)

    ADS  CAS  Article  Google Scholar 

  16. 16

    van Nierop, P. et al. Identification of molluscan nicotinic acetylcholine receptor (nAChR) subunits involved in formation of cation- and anion-selective nAChRs. J. Neurosci. 25, 10617–10626 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Beg, A. A. & Jorgensen, E. M. EXP-1 is an excitatory GABA-gated cation channel. Nature Neurosci. 6, 1145–1152 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Lee, D. J.-S., Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. The contribution of proline 250 (P-2′) to pore diameter and ion selectivity in the human glycine receptor channel. Neurosci. Lett. 351, 196–200 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Schutz, C. N. & Warshel, A. What are the dielectric ‘constants’ of proteins and how to validate electrostatic models? Proteins 44, 400–417 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Harms, M. J. et al. The pK a values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. J. Mol. Biol. 389, 34–47 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Kamerlin, S. C. L., Haranczyk, M. & Warshel, A. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK, redox reactions and solvation free energies. J. Phys. Chem. B 113, 1253–1272 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Karp, D. A., Stahley, M. R. & García-Moreno, E. B. Conformational consequences of ionization of Lys, Asp, and Glu buried at position 66 in staphylococcal nuclease. Biochemistry 49, 4138–4146 (2010)

    CAS  Article  Google Scholar 

  24. 24

    Chimenti, M. S., Castañeda, C. A., Majumdar, A. & García-Moreno, E. B. Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein. J. Mol. Biol. 405, 361–377 (2011)

    CAS  Article  Google Scholar 

  25. 25

    Papke, D., Gonzalez-Gutierrez, G. & Grosman, C. Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: a comparative study of Cys-loop, AMPA and purinergic receptors. J. Physiol. (Lond.) 589, 1571–1585 (2011)

    CAS  Article  Google Scholar 

  26. 26

    Engel, A. G. et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum. Mol. Genet. 5, 1217–1227 (1996)

    MathSciNet  CAS  Article  Google Scholar 

  27. 27

    Grosman, C. & Auerbach, A. Asymmetric and independent contribution of the second transmembrane segment 12′ residues to diliganded gating of acetylcholine receptor channels. A single-channel study with choline as the agonist. J. Gen. Physiol. 115, 637–651 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Ohno, K. et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc. Natl Acad. Sci. USA 92, 758–762 (1995)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996)

    CAS  Article  Google Scholar 

  31. 31

    Elenes, S., Ni, Y., Cymes, G. D. & Grosman, C. Desensitization contributes to the synaptic response of gain-of-function mutants of the muscle nicotinic receptor. J. Gen. Physiol. 128, 615–627 (2006)

    CAS  Article  Google Scholar 

  32. 32

    Barry, P. H. & Lynch, J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membr. Biol. 121, 101–117 (1991)

    CAS  Article  Google Scholar 

Download references


We thank S. Sine for wild-type muscle AChR cDNA; M. Slaughter and D. Papke for wild-type α1 GlyR cDNA; S. Elenes for critical advice on fast-perfusion experiments; E. Jakobsson and H. Robertson for discussions; and G. Papke, M. Maybaum, J. Pizarek and C. Staehlin for technical assistance. This work was supported by a grant from the US National Institutes of Health (R01-NS042169 to C.G.).

Author information



Corresponding author

Correspondence to Claudio Grosman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-10 with legends, Supplementary Tables 1-4 and additional references. (PDF 2047 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cymes, G., Grosman, C. Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors. Nature 474, 526–530 (2011). https://doi.org/10.1038/nature10015

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.