Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preserving the membrane barrier for small molecules during bacterial protein translocation

Abstract

Many proteins are translocated through the SecY channel in bacteria and archaea and through the related Sec61 channel in eukaryotes1. The channel has an hourglass shape with a narrow constriction approximately halfway across the membrane, formed by a pore ring of amino acids2. While the cytoplasmic cavity of the channel is empty, the extracellular cavity is filled with a short helix called the plug2, which moves out of the way during protein translocation3,4. The mechanism by which the channel transports large polypeptides and yet prevents the passage of small molecules, such as ions or metabolites, has been controversial2,5,6,7,8. Here, we have addressed this issue in intact Escherichia coli cells by testing the permeation of small molecules through wild-type and mutant SecY channels, which are either in the resting state or contain a defined translocating polypeptide chain. We show that in the resting state, the channel is sealed by both the pore ring and the plug domain. During translocation, the pore ring forms a ‘gasket-like’ seal around the polypeptide chain, preventing the permeation of small molecules. The structural conservation of the channel in all organisms indicates that this may be a universal mechanism by which the membrane barrier is maintained during protein translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Testing the permeability of the resting SecY channel.
Figure 2: Testing the permeability of a translocating SecY channel.
Figure 3: Permeability in pore ring mutants.
Figure 4: Model for the maintenance of the membrane barrier by the SecY channel.

Similar content being viewed by others

References

  1. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamman, B. D., Hendershot, L. M. & Johnson, A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747–758 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991)

    Article  CAS  PubMed  Google Scholar 

  8. Saparov, S. M. et al. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501–509 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Li, W. et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26, 511–521 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W., Bogdanov, M., Pi, J., Pittard, A. J. & Dowhan, W. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J. Biol. Chem. 278, 50128–50135 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli . J. Bioenerg. Biomembr. 22, 291–310 (1990)

    Article  CAS  PubMed  Google Scholar 

  12. Derman, A. I., Puziss, J. W., Bassford, P. J. & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli . EMBO J. 12, 879–888 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, M. A., Clemons, W. M., Jr, DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454–6465 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalal, K. & Duong, F. The SecY complex forms a channel capable of ionic discrimination. EMBO Rep. 10, 762–768 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schierle, C. F. et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185, 5706–5713 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Nakatogawa, H. & Ito, K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Woolhead, C. A., Johnson, A. E. & Bernstein, H. D. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22, 587–598 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Ménétret, J. F. et al. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16, 1126–1137 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schiebel, E. & Wickner, W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 267, 7505–7510 (1992)

    CAS  PubMed  Google Scholar 

  22. Le Gall, S., Neuhof, A. & Rapoport, T. A. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 15, 447–455 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heritage, D. & Wonderlin, W. F. Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J. Biol. Chem. 276, 22655–22662 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Roy, A. & Wonderlin, W. F. The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J. Biol. Chem. 278, 4397–4403 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Junne, T., Kocik, L. & Spiess, M. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol. Biol. Cell 21, 1662–1670 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wada, A., Yamazaki, Y., Fujita, N. & Ishihama, A. Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc. Natl Acad. Sci. USA 87, 2657–2661 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akiyama, Y. & Ito, K. SecY protein, a membrane-embedded secretion factor of E. coli, is cleaved by the OmpT protease in vitro. Biochem. Biophys. Res. Commun. 167, 711–715 (1990)

    Article  CAS  PubMed  Google Scholar 

  28. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heller, K. B., Lin, E. C. & Wilson, T. H. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli . J. Bacteriol. 144, 274–278 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Walter, H. Bernstein and G. Phillips for materials, D. Boyd for advice, C. Akey for discussions and C. Akey, A. Osborne and A. Salic for critical reading of the manuscript. The work was supported by a grant from the NIH (GM052586). T.A.R. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

E.P. performed the experiments and E.P. and T.A.R. wrote the manuscript.

Corresponding author

Correspondence to Tom A. Rapoport.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-16 with legends, Supplementary Tables 1-2, a Supplementary Discussion and additional references. (PDF 5591 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, E., Rapoport, T. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473, 239–242 (2011). https://doi.org/10.1038/nature10014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing