COP1 is a tumour suppressor that causes degradation of ETS transcription factors

Abstract

The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer1,2,3,4. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The COP1/DET1 ubiquitin ligase regulates ETV1 turnover.
Figure 2: Truncated ETV1 encoded by prostate cancer translocations is not degraded by the COP1/DET1 ubiquitin ligase.
Figure 3: COP1 deficiency in prostatic epithelium causes hyperplasia, early MPIN, and enhances the effects of PTEN loss.
Figure 4: Loss of COP1 and decreased ETV1 protein expression in human prostate adenocarcinomas.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data has been deposited with the Gene Expression Omnibus under accession codes GSE27914.

References

  1. 1

    Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nature Rev. Cancer 8, 497–511 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nature Rev. Urol. 6, 429–439 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Bartel, F. O., Higuchi, T. & Spyropoulos, D. D. Mouse models in the study of the Ets family of transcription factors. Oncogene 19, 6443–6454 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Gutierrez-Hartmann, A., Duval, D. L. & Bradford, A. P. ETS transcription factors in endocrine systems. Trends Endocrinol. Metab. 18, 150–158 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Wertz, I. E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Qi, L. et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 312, 1763–1766 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Seo, H. S. et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995–999 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Bianchi, E. et al. Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity. J. Biol. Chem. 278, 19682–19690 (2003)

    CAS  Article  Google Scholar 

  10. 10

    Yi, C. & Deng, X. W. COP1 – from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 15, 618–625 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Baert, J. L. et al. The E3 ubiquitin ligase complex component COP1 regulates PEA3 group member stability and transcriptional activity. Oncogene 29, 1810–1820 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Hermans, K. G. et al. Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res. 68, 7541–7549 (2008)

    CAS  Article  Google Scholar 

  14. 14

    Xin, L., Ide, H., Kim, Y., Dubey, P. & Witte, O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc. Natl Acad. Sci. USA 100 (Suppl. 1). 11896–11903 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Wu, X. et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech. Dev. 101, 61–69 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004)

    CAS  Article  Google Scholar 

  18. 18

    Ouyang, X. et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 68, 2132–2144 (2008)

    CAS  Article  Google Scholar 

  19. 19

    Ali, I. U., Schriml, L. M. & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J. Natl. Cancer Inst. 91, 1922–1932 (1999)

    CAS  Article  Google Scholar 

  20. 20

    Yoshimoto, M. et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet. Cytogenet. 169, 128–137 (2006)

    CAS  Article  Google Scholar 

  21. 21

    King, J. C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genet. 41, 524–526 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genet. 41, 619–624 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Cai, C. et al. ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol. Endocrinol. 21, 1835–1846 (2007)

    CAS  Article  Google Scholar 

  24. 24

    de Launoit, Y. et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim. Biophys. Acta 1766, 79–87 (2006)

    CAS  PubMed  Google Scholar 

  25. 25

    Whang, Y. E. et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl Acad. Sci. USA 95, 5246–5250 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999)

    CAS  Article  Google Scholar 

  27. 27

    Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nature Genet. 5, 56–61 (1993)

    CAS  Article  Google Scholar 

  28. 28

    Albert, T., Urlbauer, B., Kohlhuber, F., Hammersen, B. & Eick, D. Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 9, 759–763 (1994)

    CAS  PubMed  Google Scholar 

  29. 29

    Clark, H. M. et al. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Cancer Res. 54, 3383–3386 (1994)

    CAS  PubMed  Google Scholar 

  30. 30

    Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002)

    CAS  Article  Google Scholar 

  31. 31

    Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 (1992)

    CAS  Article  Google Scholar 

  34. 34

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 1, 2856–2860 (2007)

    Article  Google Scholar 

  35. 35

    Yi, E. C., Lee, H., Aebersold, R. & Goodlett, D. R. A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid Commun. Mass Spectrom. 17, 2093–2098 (2003)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Holm, M., Hardtke, C. S., Gaudet, R. & Deng, X. W. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20, 118–127 (2001)

    CAS  Article  Google Scholar 

  37. 37

    Ang, L. H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222 (1998)

    CAS  Article  Google Scholar 

  38. 38

    Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369 (2007)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008)

    CAS  Article  Google Scholar 

  40. 40

    Cunha, G. R. & Lung, B. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J. Exp. Zool. 205, 181–193 (1978)

    CAS  Article  Google Scholar 

  41. 41

    Jubb, A. M., Pham, T. Q., Frantz, G. D., Peale, F. V., Jr & Hillan, K. J. Quantitative in situ hybridization of tissue microarrays. Methods Mol. Biol. 326, 255–264 (2006)

    CAS  PubMed  Google Scholar 

  42. 42

    Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20, 538–544 (2007)

    CAS  Article  Google Scholar 

  43. 43

    O'Brien, C. et al. Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res. 68, 5380–5389 (2008)

    CAS  Article  Google Scholar 

  44. 44

    Pandita, A., Aldape, K. D., Zadeh, G., Guha, A. & James, C. D. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom. Cancer 39, 29–36 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. White and A. Chinnaiyan for reagents, B. Bolon for pathology support, and D. Dunlap for in situ hybridization.

Author information

Affiliations

Authors

Contributions

A.C.V. designed and performed in vitro experiments. A.C.V., K.G.L., C.Y. and W.-Q.G. designed and performed in vivo experiments. K.N. designed and generated the Cop1 mutant mice. R.V., R.F. and J.-A.H. generated monoclonal antibodies and performed immunohistochemistry. K.O. made constructs. J.L. performed bioinformatics analyses. S.M. and A.P. designed and performed FISH experiments. L.P. and D.A. designed and performed mass spectrometry experiments. S.S.C. and D.M.F. assessed the histopathology of mouse and human tissues. A.C.V., K.G.L., K.N., K.O., J.L., L.P., R.F., S.M., A.P., D.A., D.M.F. and V.M.D. prepared the manuscript and figures. A.C.V., K.G.L., K.N., C.Y., J.L., R.F., S.M., A.P., D.A., I.E.W., W.-Q.G., D.M.F. and V.M.D. contributed to the study design and data analyses.

Corresponding author

Correspondence to Vishva M. Dixit.

Ethics declarations

Competing interests

All authors were employees of Genentech, Inc.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-4 and Supplementary Figures 1-10 with legends. (PDF 24575 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vitari, A., Leong, K., Newton, K. et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature 474, 403–406 (2011). https://doi.org/10.1038/nature10005

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing