Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superconductor–insulator transition in La2 − xSr x CuO4 at the pair quantum resistance


High-temperature superconductivity in copper oxides arises when a parent insulator compound is doped beyond some critical concentration; what exactly happens at this superconductor–insulator transition is a key open question1. The cleanest approach is to tune the carrier density using the electric field effect2,3,4,5,6,7; for example, it was learned in this way5 that weak electron localization transforms superconducting SrTiO3 into a Fermi-glass insulator. But in the copper oxides this has been a long-standing technical challenge3, because perfect ultrathin films and huge local fields (>109 V m−1) are needed. Recently, such fields have been obtained using electrolytes or ionic liquids in the electric double-layer transistor configuration8,9,10. Here we report synthesis of epitaxial films of La2− xSr x CuO4 that are one unit cell thick, and fabrication of double-layer transistors. Very large fields and induced changes in surface carrier density enable shifts in the critical temperature by up to 30 K. Hundreds of resistance versus temperature and carrier density curves were recorded and shown to collapse onto a single function, as predicted for a two-dimensional superconductor–insulator transition11,12,13,14. The observed critical resistance is precisely the quantum resistance for pairs, RQ = h/(2e)2 = 6.45 kΩ, suggestive of a phase transition driven by quantum phase fluctuations, and Cooper pair (de)localization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of superconducting field effect devices to the gate voltage.
Figure 2: Superconductor–insulator transition driven by electric field.


  1. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Parendo, K. A. et al. Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005)

    Article  ADS  Google Scholar 

  3. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Matthey, D., Reyren, N., Triscone, J.-M. & Schneider, T. Electric-field-effect modulation of the transition temperature, mobile carrier density, and in-plane penetration depth of NdBa2Cu3O7-δ thin films. Phys. Rev. Lett. 98, 057002 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 Interface. Phys. Rev. Lett. 103, 226802 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Biscaras, J. et al. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3 . Nature Commun. 1, 1–5 (2010)

    Article  Google Scholar 

  8. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Dhoot, A. S. et al. Increased T c in electrolyte-gated cuprates. Adv. Mater. 22, 2529–2533 (2010)

    Article  CAS  Google Scholar 

  11. Sondhi, S. L., Grivin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997)

    Article  ADS  Google Scholar 

  12. Fisher, M. P. A., Grinstein, G. & Girvin, S. M. Presence of quantum diffusion in two dimensions: universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587–590 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Goldman, A. M. & Markovic´, N. Superconductor-insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998)

    Article  CAS  Google Scholar 

  14. Gantmakher, V. F. & Dolgopolov, V. T. Superconductor-insulator quantum phase transition. Phys. Usp. 53, 1–49 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Logvenov, G., Gozar, A. & Bozovic, I. High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699–702 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Smadici, S. et al. Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1. 64Sr0. 36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-ray scattering. Phys. Rev. Lett. 102, 107004 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Wang, T. et al. Onset of high-temperature superconductivity in the two-dimensional limit. Phys. Rev. B 43, 8623–8626 (1991)

    Article  ADS  CAS  Google Scholar 

  19. Yazdani, A. & Kapitulnik, A. Superconducting-insulating transition in two-dimensional α-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor-insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Herbut, I. F. Critical exponents at the superconductor-insulator transition in dirty-boson systems. Phys. Rev. B 61, 14723–14726 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Steiner, M. A., Breznay, N. P. & Kapitulnik, A. Approach to a superconductor-to-Bose-insulator transition in disordered films. Phys. Rev. B 77, 212501 (2008)

    Article  ADS  Google Scholar 

  24. Tesˇanovic´, Z. d-wave duality and its reflections in high-temperature superconductors. Nature Phys. 4, 408–414 (2008)

    Article  ADS  Google Scholar 

  25. Li, L., Checkelsky, J. G., Komiya, S., Ando, Y. & Ong, N. P. Low-temperature vortex liquid in La2-x Sr x CuO4 . Nature Phys. 3, 311–314 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Valla, T., Fedorov, A. V., Lee, J., Davis, J. C. & Gu, G. D. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2-x Sr x CuO4 probed by terahertz spectroscopy. Nature Phys. 7, 298–302 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Broun, D. M. et al. Superfluid density in a highly underdoped YBa2Cu3O6+y superconductor. Phys. Rev. Lett. 99, 237003 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. Nature Phys. 3, 700–702 (2007)

    Article  ADS  CAS  Google Scholar 

Download references


The work at BNL was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A.T.B. was supported by the US DOE, Energy Frontier Research Center. D.P. and G.D. were supported by the Laboratory for Physics of Complex Matter (EPFL) and the Swiss National Science Foundation. We are grateful to A. Tsvelik, J. C. Davis, A. Balatsky, P. N. Armitage, A. Goldman, V. Gantmakher, I. Herbut, Z. Tes̆anović, A. Chubukov, J. Mannhart, J.-M. Triscone, N. Marković, N. Mason and M. Norman for comments and suggestions and to R. Adzić, G. Logvenov, J. Pereiro, J. Sadovsky and R. Sundling for technical help.

Author information

Authors and Affiliations



I.B. and A.T.B. conceived and designed the experiments. I.B. synthesized the films. A.T.B. fabricated the devices. A.T.B., G.D. and J.Y. carried out the transport measurements. All authors analysed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to I. Božović.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-16 with legends and additional references. (PDF 2694 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bollinger, A., Dubuis, G., Yoon, J. et al. Superconductor–insulator transition in La2 − xSr x CuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing