Quantum simulation of antiferromagnetic spin chains in an optical lattice

Article metrics


Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spin model and its phase diagram.
Figure 2: Tilted Hubbard model and mapping to spin model.
Figure 3: Probing the paramagnet to antiferromagnet phase transition.
Figure 4: Effect of harmonic confinement.
Figure 5: Site-resolved transition in near-homogeneous Ising model.
Figure 6: Dynamics of antiferromagnetic domain formation.


  1. 1

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010)

  2. 2

    Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

  3. 3

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

  4. 4

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2001)

  5. 5

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987)

  6. 6

    Rüegg, C. et al. Quantum magnets under pressure: controlling elementary excitations in TlCuCl3 . Phys. Rev. Lett. 100, 205701 (2008)

  7. 7

    Coldea, R. et al. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry. Science 327, 177–180 (2010)

  8. 8

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007)

  9. 9

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

  10. 10

    Greiner, M., Mandel, O., Esslinger, E., Haensch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

  11. 11

    Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008)

  12. 12

    Zhang, X., Hung, C.-L., Tung, S.-K., Gemelke, N. & Chin, C. Exploring quantum criticality based on ultracold atoms in optical lattices. Preprint at 〈http://arXiv.org/abs/1101.0284〉 (2010)

  13. 13

    Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Observation of scale invariance and universality in two-dimensional Bose gases. Nature 470, 236–239 (2011)

  14. 14

    Bakr, W. S., Gillen, J. I., Peng, A., Foelling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

  15. 15

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

  16. 16

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

  17. 17

    Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011)

  18. 18

    Jo, G. et al. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science 325, 1521–1524 (2009)

  19. 19

    Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008)

  20. 20

    Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)

  21. 21

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

  22. 22

    Saffman, M. & Walker, T. G. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

  23. 23

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

  24. 24

    Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007)

  25. 25

    Weimer, H., Müller, M. & Lesanovsky, I. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010)

  26. 26

    Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007)

  27. 27

    Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. advance online publication. 10.1038/nphys1916 (13 February 2011)

  28. 28

    Fölling, S. et al. Direct observation of second-order atom tunnelling. Nature 448, 1029–1032 (2007)

  29. 29

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

  30. 30

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

  31. 31

    Sachdev, S., Sengupta, K. & Girvin, S. M. Mott insulators in strong electric fields. Phys. Rev. B 66, 075128 (2002)

  32. 32

    Duan, L. M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

  33. 33

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008)

  34. 34

    Capogrosso-Sansone, B., Soeyler, S. G., Prokof'ev, N. V. & Svistunov, B. V. Critical entropies for magnetic ordering in bosonic mixtures on a lattice. Phys. Rev. A 81, 053622 (2010)

  35. 35

    Weld, D. M. et al. Spin gradient thermometry for ultracold atoms in optical lattices. Phys. Rev. Lett. 103, 245301 (2009)

  36. 36

    Medley, P., Weld, D., Miyake, H., Pritchard, D. E. & Ketterle, W. Spin gradient demagnetization cooling of ultracold atoms. Preprint at 〈http://arxiv.org/abs/1006.4674〉 (2010)

  37. 37

    McKay, D. & DeMarco, B. Cooling in strongly correlated optical lattices: prospects and challenges. Preprint at 〈http://arxiv.org/abs/1010.0198〉 (2010)

  38. 38

    García-Ripoll, J. J., Martin-Delgado, M. A. & Cirac, J. I. Implementation of spin Hamiltonians in optical lattices. Phys. Rev. Lett. 93, 250405 (2004)

  39. 39

    Novotny, M. A. & Landau, D. P. Zero temperature phase diagram for the d = 1 quantum Ising antiferromagnet. J. Magn. Magn. Mater. 54-57, 685–686 (1986)

  40. 40

    Ovchinnikov, A. A., Dmitriev, D. V., Krivnov, V. Y. & Cheranovskii, V. O. Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field. Phys. Rev. B 68, 214406 (2003)

  41. 41

    Imry, Y. & Ma, S.-k. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975)

  42. 42

    Dziarmaga, J. Dynamics of a quantum phase transition in the random Ising model: logarithmic dependence of the defect density on the transition rate. Phys. Rev. B 74, 064416 (2006)

  43. 43

    Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

  44. 44

    Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004)

  45. 45

    Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005)

  46. 46

    Sørensen, A. S. et al. Adiabatic preparation of many-body states in optical lattices. Phys. Rev. A 81, 061603 (2010)

  47. 47

    Bañuls, M. C., Cirac, J. I. & Hastings, M. B. Strong and weak thermalization of infinite nonintegrable quantum systems. Phys. Rev. Lett. 106, 050405 (2011)

  48. 48

    Plötz, P., Schlagheck, P. & Wimberger, S. Effective spin model for interband transport in a Wannier-Stark lattice system. Eur. Phys. J. D 10.1140/epjd/e2010-10554-7 (2010)

  49. 49

    Pielawa, S., Kitagawa, T., Berg, E. & Sachdev, S. Correlated phases of bosons in tilted, frustrated lattices. Preprint at 〈http://arxiv.org/abs/1101.2897〉 (2010)

Download references


We thank E. Demler, W. Ketterle, T. Kitagawa, M.D. Lukin, S. Pielawa and S. Sachdev for discussions. This work was supported by the Army Research Office DARPA OLE programme, an AFOSR MURI programme, and by grants from the NSF.

Author information

All authors contributed to the construction of the experiment, the collection and analysis of the data, and the writing of the manuscript.

Correspondence to Markus Greiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Discussions, Supplementary Table 1, Supplementary Figures 1-3 with legends and additional references. (PDF 547 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simon, J., Bakr, W., Ma, R. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011) doi:10.1038/nature09994

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.