Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal spin transport in a strongly interacting Fermi gas

Abstract

Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information1. Neutrino transport energizes supernova explosions following the collapse of a dying star2, and hydrodynamic transport of the quark–gluon plasma governed the expansion of the early Universe3. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics4. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance3,5,6,7,8. In this hydrodynamic regime, collective density excitations are weakly damped6,7. Here we experimentally investigate spin excitations in a Fermi gas of 6Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by /m, the quantum limit of diffusion, where /m is Planck’s constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state9,10,11.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Observation of spin current reversal in a resonant collision between two oppositely spin-polarized clouds of fermions.
Figure 2: Spin drag coefficient of a trapped Fermi gas with resonant interactions.
Figure 3: Spin diffusivity of a trapped Fermi gas.
Figure 4: Spin susceptibility on resonance.

References

  1. Wolf, S. A. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Burrows, A. Neutrinos from supernova explosions. Annu. Rev. Nucl. Part. Sci. 40, 181–212 (1990)

    ADS  CAS  Article  Google Scholar 

  3. Schäfer, T. & Teaney, D. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rep. Prog. Phys. 72, 126001 (2009)

    ADS  Article  Google Scholar 

  4. Inguscio, M., Ketterle, W., Salomon, C. (eds) Ultracold Fermi Gases (Proc. Int. School of Physics ‘Enrico Fermi’, Course CLXIV, IOS, 2008)

    Google Scholar 

  5. O'Hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R. & Thomas, J. E. Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298, 2179–2182 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Riedl, S. et al. Collective oscillations of a Fermi gas in the unitarity limit: temperature effects and the role of pair correlations. Phys. Rev. A 78, 053609 (2008)

    ADS  Article  Google Scholar 

  7. Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2011)

    ADS  CAS  Article  Google Scholar 

  8. Enss, T., Haussmann, R. & Zwerger, W. Viscosity and scale invariance in the unitary Fermi gas. Ann. Phys. 326, 770–796 (2011)

    ADS  CAS  Article  Google Scholar 

  9. Jo, G.-B. et al. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science 325, 1521–1524 (2009)

    ADS  CAS  Article  Google Scholar 

  10. Stringari, S. Density and spin response function of a normal Fermi gas at unitarity. Phys. Rev. Lett. 102, 110406 (2009)

    ADS  CAS  Article  Google Scholar 

  11. Duine, R. A., Polini, M., Stoof, H. T. C. & Vignale, G. Spin drag in an ultracold Fermi gas on the verge of ferromagnetic instability. Phys. Rev. Lett. 104, 220403 (2010)

    ADS  CAS  Article  Google Scholar 

  12. D'Amico, I. & Vignale, G. Theory of spin Coulomb drag in spin-polarized transport. Phys. Rev. B 62, 4853–4857 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Weber, C. P. et al. Observation of spin Coulomb drag in a two-dimensional electron gas. Nature 437, 1330–1333 (2005)

    ADS  CAS  Article  Google Scholar 

  14. D’Amico, I. & Vignale, G. Coulomb interaction effects in spin-polarized transport. Phys. Rev. B 65, 085109 (2002)

    ADS  Article  Google Scholar 

  15. Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410–1412 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Garwin, R. L. & Reich, H. A. Self-diffusion and nuclear relaxation in He3 . Phys. Rev. 115, 1478–1492 (1959)

    ADS  CAS  Article  Google Scholar 

  17. Anderson, A. C., Edwards, D. O., Roach, W. R., Sarwinski, R. E. & Wheatley, J. C. Thermal and magnetic properties of dilute solutions of He3 in He4 at low temperatures. Phys. Rev. Lett. 17, 367–372 (1966)

    ADS  Article  Google Scholar 

  18. DeMarco, B. & Jin, D. S. Spin excitations in a Fermi gas of atoms. Phys. Rev. Lett. 88, 040405 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Du, X., Luo, L., Clancy, B. & Thomas, J. E. Observation of anomalous spin segregation in a trapped Fermi gas. Phys. Rev. Lett. 101, 150401 (2008)

    ADS  CAS  Article  Google Scholar 

  20. Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic superfluidity with imbalanced spin populations. Science 311, 492–496 (2006)

    ADS  CAS  Article  Google Scholar 

  21. Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006)

    ADS  CAS  Article  Google Scholar 

  22. Vichi, L. & Stringari, S. Collective oscillations of an interacting trapped Fermi gas. Phys. Rev. A 60, 4734–4737 (1999)

    ADS  CAS  Article  Google Scholar 

  23. Nascimbène, S., Navon, N., Jiang, K. J., Chevy, F. & Salomon, C. Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010)

    ADS  Article  Google Scholar 

  24. Bruun, G. M., Recati, A., Petchick, C. J., Smith, H. & Stringari, S. Collisional properties of a polarized Fermi gas with resonant interactions. Phys. Rev. Lett. 100, 240406 (2008)

    ADS  CAS  Article  Google Scholar 

  25. Bruun, G. M. Spin diffusion in Fermi gases. New J. Phys. 13, 035005 (2011)

    ADS  Article  Google Scholar 

  26. Polini, M. & Vignale, G. Spin drag and spin-charge separation in cold Fermi gases. Phys. Rev. Lett. 98, 266403 (2007)

    ADS  Article  Google Scholar 

  27. Parish, M. M. & Huse, D. A. Evaporative depolarization and spin transport in a unitary trapped Fermi gas. Phys. Rev. A 80, 063605 (2009)

    ADS  Article  Google Scholar 

  28. Gaebler, J. P. et al. Observation of pseudogap behavior in a strongly interacting Fermi gas. Nature Phys. 6, 569–573 (2010)

    ADS  CAS  Article  Google Scholar 

  29. Perali, A. et al. Evolution of the normal state of a strongly interacting Fermi gas from a pseudogap phase to a molecular Bose gas. Phys. Rev. Lett. 106, 060402 (2011)

    ADS  CAS  Article  Google Scholar 

  30. Partridge, G. B., Li, W., Kamar, R. I., Liao, Y. & Hulet, R. G. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006)

    ADS  CAS  Article  Google Scholar 

  31. Nascimbène, S. et al. Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)

    ADS  Article  Google Scholar 

  32. Ku, M. et al. Equation of state of a strongly interacting atomic Fermi gas. Bull. Am. Phys. Soc. 55, abstr. W6. 00001 (2010); available at 〈http://meetings.aps.org/link/BAPS.2010.DAMOP.W6.1〉 (2010)

Download references

Acknowledgements

We thank G. Bruun, C. Pethick, D. Huse, R. Duine and W. Zwerger for discussions, and A. Schirotzek for help with the early stages of the experiment. This work was supported by the NSF, AFOSR-MURI, ARO-MURI, ONR, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE programme, the David and Lucille Packard Foundation and the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental work. A.S. analysed the data. M.K. developed the algorithm for thermometry. M.W.Z. performed theoretical calculations. A.S. and M.W.Z wrote the manuscript.

Corresponding author

Correspondence to Ariel Sommer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figures 1-2 with legends, Supplementary Methods, Supplementary Equations and additional references. (PDF 270 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sommer, A., Ku, M., Roati, G. et al. Universal spin transport in a strongly interacting Fermi gas. Nature 472, 201–204 (2011). https://doi.org/10.1038/nature09989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09989

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing