Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins


Uniform lithospheric extension1 predicts basic properties of non-volcanic rifted margins but fails to explain other important characteristics2,3. Significant discrepancies are observed at ‘type I’ margins (such as the Iberia–Newfoundland conjugates), where large tracts of continental mantle lithosphere are exposed at the sea floor4, and ‘type II’ margins (such as some ultrawide central South Atlantic margins), where thin continental crust spans wide regions below which continental lower crust and mantle lithosphere have apparently been removed5,6. Neither corresponds to uniform extension. Instead, either crust or mantle lithosphere has been preferentially removed. Using dynamical models, we demonstrate that these margins are opposite end members: in type I, depth-dependent extension results in crustal-necking breakup before mantle-lithosphere breakup and in type II, the converse is true. These two-layer, two-stage breakup behaviours explain the discrepancies and have implications for the styles of the associated sedimentary basins. Laterally flowing lower-mantle cratonic lithosphere may underplate some type II margins, thereby contributing to their anomalous characteristics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characteristic properties of type I and type II margins.
Figure 2: Type I margins.
Figure 3: Type II margins.
Figure 4: Contrasting depth-dependent extension of type I and type II lithospheric laminates.


  1. McKenzie, D. P. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–31 (1978)

    ADS  Article  Google Scholar 

  2. Royden, L. & Keen, C. E. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet. Sci. Lett. 51, 343–361 (1980)

    ADS  Article  Google Scholar 

  3. Davis, M. & Kusznir, N. Depth-dependent lithospheric stretching at rifted continental margins. Proc. NSF Rifted Margins Theoretical Institute 1, 92–136 (2004)

    Google Scholar 

  4. Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Moulin, M. et al. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 162, 793–810 (2005)

    ADS  Article  Google Scholar 

  6. Contrucci, I. et al. Deep structure of the West African continental margin (Congo, Zaire, Angola), between 5° S and 8° S, from reflection/refraction seismics and gravity data. Geophys. J. Int. 158, 529–553 (2004)

    ADS  Article  Google Scholar 

  7. Peron-Pinvidic, G., Manatschal, G., Minshull, T. A. & Sawyer, D. S. Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: evidence for a complex breakup history. Tectonics 26 10.1029/2006tc001970 (2007)

  8. Van Avendonk, H. J. A., Lavier, L. L., Shillington, D. J. & Manatschal, G. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics 468, 131–148 (2009)

    ADS  Article  Google Scholar 

  9. Peron-Pinvidic, G. & Manatschal, G. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int. J. Earth Sci. 98, 1581–1597 (2009)

    Article  Google Scholar 

  10. Huismans, R. S. & Beaumont, C. Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. Geol. Soc. Lond. Spec. Publ. 282, 111–138 (2007)

    ADS  Article  Google Scholar 

  11. Karner, G. D. & Driscoll, N. W. Style, timing and distribution of tectonic deformation across the Exmouth Plateau, northwest Australia, determined from stratal architecture and quantitative basin modelling. Geol. Soc. Lond. Spec. Publ. 164, 271–311 (1999)

    ADS  CAS  Article  Google Scholar 

  12. Wernicke, B. Uniform-sense normal simple shear of the continental lithosphere. Can. J. Earth Sci. 22, 108–125 (1985)

    ADS  Article  Google Scholar 

  13. Reston, T. Extension discrepancy at North Atlantic nonvolcanic rifted margins: depth-dependent stretching or unrecognized faulting? Geology 35 367–370 10.1130/G23213a.1 (2007)

    ADS  Article  Google Scholar 

  14. Huismans, R. S. & Beaumont, C. Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension. Geology 36, 163–166 (2008)

    ADS  Article  Google Scholar 

  15. Aslanian, D. et al. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: kinematic constraints. Tectonophysics 468, 98–112 (2009)

    ADS  Article  Google Scholar 

  16. Karner, G. D. &. Gamboa, L.A.P. Timing and origin of the South Atlantic pre-salt basins and their capping evaporites. Geol. Soc. Lond. Spec. Publ. 285, 15–35 (2007)

    ADS  Article  Google Scholar 

  17. Dupre, S., Bertotti, G. & Cloetingh, S. Tectonic history along the South Gabon Basin: anomalous early post-rift subsidence. Mar. Petrol. Geol. 24, 151–172 (2007)

    Article  Google Scholar 

  18. Griffin, W. L., O'Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009)

    ADS  CAS  Article  Google Scholar 

  19. King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Sleep, N. H. Evolution of the continental lithosphere. Annu. Rev. Earth Planet. Sci. 33, 369–393 (2005)

    ADS  CAS  Article  Google Scholar 

  21. Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5, 23–50 (2009)

    ADS  Article  Google Scholar 

  22. Ritsema, J. & van Heijst, H. New seismic model of the upper mantle beneath Africa. Geology 28, 63–66 (2000)

    ADS  Article  Google Scholar 

  23. Sebai, A., Stutzmann, E., Montagner, J. P., Sicilia, D. & Beucler, E. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys. Earth Planet. Inter. 155, 48–62 (2006)

    ADS  Article  Google Scholar 

  24. McKenzie, D. & Priestley, K. The influence of lithospheric thickness variations on continental evolution. Lithos 102, 1–11 (2008)

    ADS  CAS  Article  Google Scholar 

  25. Halliday, A. N., Dickin, A. P., Fallick, A. E. & Fitton, J. G. Mantle dynamics—a Nd, Sr, Pb and O isotopic study of the Cameroon Line volcanic chain. J. Petrol. 29, 181–211 (1988)

    ADS  CAS  Article  Google Scholar 

  26. Rankenburg, K., Lassiter, J. C. & Brey, G. The role of continental crust and lithospheric mantle in the genesis of Cameroon Volcanic Line lavas: constraints from isotopic variations in lavas and megacrysts from the Biu and Jos plateaux. J. Petrol. 46, 169–190 (2005)

    CAS  Article  Google Scholar 

  27. Regelous, M., Niu, Y. L., Abouchami, W. & Castillo, P. R. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: geochemical evidence from the Mid-Atlantic Ridge at 26 degrees S. Lithos 112, 57–72 (2009)

    ADS  CAS  Article  Google Scholar 

  28. Simons, F. J., Zielhuis, A. & van der Hilst, R. D. The deep structure of the Australian continent from surface wave tomography. Lithos 48, 17–43 (1999)

    ADS  CAS  Article  Google Scholar 

  29. Fishwick, S., Heintz, M., Kennett, B. L. N., Reading, A. M. & Yoshizawa, K. Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics 27 10.1029/2007tc002116 (2008)

  30. O’Reilly, S. Y., Zhang, M., Griffin, W. L., Begg, G. & Hronsky, J. Ultradeep continental roots and their oceanic remnants: a solution to the geochemical “mantle reservoir” problem? Lithos 211S, 1043–1054 (2009)

    ADS  Article  Google Scholar 

  31. Fraser, S. I., Fraser, A. J., Lentini, M. R. & Gawthorpe, R. L. Return to rifts—the next wave: fresh insights into the petroleum geology of global rift basins. Petrol. Geosci. 13, 99–104 (2007)

    CAS  Article  Google Scholar 

  32. Fullsack, P. An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models. Geophys. J. Int. 120, 1–23 (1995)

    ADS  Article  Google Scholar 

  33. Willett, S. D. Rheological dependence of extension in wedge models of convergent orogens. Tectonophysics 305, 419–435 (1999)

    ADS  Article  Google Scholar 

  34. Huismans, R. S. & Beaumont, C. Symmetric and asymmetric lithospheric extension: relative effects of frictional-plastic and viscous strain softening. J. Geophys. Res. 108 10.1029/2002jb002026 (2003)

  35. Gleason, G. C. & Tullis, J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247, 1–23 (1995)

    ADS  Article  Google Scholar 

  36. Karato, S. I. & Wu, P. Rheology of the upper mantle; a synthesis. Science 260, 771–778 (1993)

    ADS  CAS  Article  Google Scholar 

Download references


R.H. acknowledges support of the Department of Earth Science, University of Bergen, Norway. C.B. acknowledges support of the Canada Research Chair in Geodynamics. We thank G. Karner for comments on the manuscript.

Author information

Authors and Affiliations



R.H. contributed the numerical models and data for type I and II margins. C.B. contributed ideas on the cratonic underplate. Both authors contributed to writing the manuscript and to developing the concepts.

Corresponding author

Correspondence to Ritske Huismans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 with legends, Supplementary Methods, Supplementary Table1 and additional references. (PDF 5372 kb)

Supplementary Movie 1

The movie shows Model I results, strong crust (shown for a subregion of the model domain). t = time since onset of extension, Δx = extension at uniform velocity 0.5 cm.a-1. Contours are isotherms in °C. Sediments (grey), upper/mid crust (orange),lower crust (white), (dark green) and (green) upper and lower continental mantle lithosphere, oceanic lithosphere (pale yellow), asthenosphere (yellow). (MOV 15967 kb)

Supplementary Movie 2

The movie shows Model II-A results, weak crust (shown for a subregion of the model domain). t = time since onset of extension, Δx = extension at uniform velocity 0.5 cm.a-1. Contours are isotherms in °C. Sediments (grey), upper/mid crust (orange), lower crust (white), (dark green) and (green) upper and lower continental mantle lithosphere, oceanic lithosphere (pale yellow), asthenosphere (yellow). (MOV 24506 kb)

Supplementary Movie 3

This movie shows Model II-C results, weak crust and cratonic underplate (shown for a subregion of the model domain). t = time since onset of extension, Δx =extension at uniform velocity 0.5 cm.a-1. Contours are isotherms in °C.Sediments (grey), upper/mid crust (orange), lower crust (white), (dark green) and (green) upper and lower continental mantle lithosphere, craton lower mantle lithosphere (light green), and craton crust (brown), oceanic lithosphere (pale yellow), asthenosphere (yellow). (MOV 27330 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huismans, R., Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing