Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Glutamate induces de novo growth of functional spines in developing cortex


Mature cortical pyramidal neurons receive excitatory inputs onto small protrusions emanating from their dendrites called spines. Spines undergo activity-dependent remodelling, stabilization and pruning during development, and similar structural changes can be triggered by learning and changes in sensory experiences1,2,3,4. However, the biochemical triggers and mechanisms of de novo spine formation in the developing brain and the functional significance of new spines to neuronal connectivity are largely unknown. Here we develop an approach to induce and monitor de novo spine formation in real time using combined two-photon laser-scanning microscopy and two-photon laser uncaging of glutamate. Our data demonstrate that, in mouse cortical layer 2/3 pyramidal neurons, glutamate is sufficient to trigger de novo spine growth from the dendrite shaft in a location-specific manner. We find that glutamate-induced spinogenesis requires opening of NMDARs (N-methyl-d-aspartate-type glutamate receptors) and activation of protein kinase A (PKA) but is independent of calcium–calmodulin-dependent kinase II (CaMKII) and tyrosine kinase receptor B (TrkB) receptors. Furthermore, newly formed spines express glutamate receptors and are rapidly functional such that they transduce presynaptic activity into postsynaptic signals. Together, our data demonstrate that early neural connectivity is shaped by activity in a spatially precise manner and that nascent dendrite spines are rapidly functionally incorporated into cortical circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: De novo spine generation is induced by glutamate uncaging.
Figure 2: New spines grow rapidly and acquire morphology similar to pre-existing spines.
Figure 3: Molecular mechanisms of glutamate-induced spine formation.
Figure 4: Functional characterization of new spines.


  1. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hubener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Zuo, Y., Yang, G., Kwon, E. & Gan, W. B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    Article  ADS  CAS  Google Scholar 

  6. Dalva, M. B., McClelland, A. C. & Kayser, M. S. Cell adhesion molecules: signalling functions at the synapse. Nature Rev. Neurosci. 8, 206–220 (2007)

    Article  CAS  Google Scholar 

  7. Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003)

    Article  CAS  Google Scholar 

  8. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008)

    Article  ADS  Google Scholar 

  9. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci. 5, 24–34 (2004)

    Article  CAS  Google Scholar 

  10. Miller, M. & Peters, A. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J. Comp. Neurol. 203, 555–573 (1981)

    Article  CAS  Google Scholar 

  11. Richards, D. A. et al. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc. Natl Acad. Sci. USA 102, 6166–6171 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998)

    Article  CAS  Google Scholar 

  13. Sorra, K. E., Fiala, J. C. & Harris, K. M. Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J. Comp. Neurol. 398, 225–240 (1998)

    Article  CAS  Google Scholar 

  14. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Harvey, C. D., Yasuda, R., Zhong, H. & Svoboda, K. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Tanaka, J. et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319, 1683–1687 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Yasuda, H., Barth, A. L., Stellwagen, D. & Malenka, R. C. A developmental switch in the signaling cascades for LTP induction. Nature Neurosci. 6, 15–16 (2003)

    Article  CAS  Google Scholar 

  21. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001)

    Article  CAS  Google Scholar 

  23. Chalifoux, J. R. & Carter, A. G. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron 66, 101–113 (2010)

    Article  CAS  Google Scholar 

  24. Skeberdis, V. A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nature Neurosci. 9, 501–510 (2006)

    Article  CAS  Google Scholar 

  25. Busetto, G., Higley, M. J. & Sabatini, B. L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. (Lond.) 586, 1519–1527 (2008)

    Article  CAS  Google Scholar 

  26. Zito, K., Scheuss, V., Knott, G., Hill, T. & Svoboda, K. Rapid functional maturation of nascent dendritic spines. Neuron 61, 247–258 (2009)

    Article  CAS  Google Scholar 

  27. Hamori, J. The inductive role of presynaptic axons in the development of postsynaptic spines. Brain Res. 62, 337–344 (1973)

    Article  CAS  Google Scholar 

  28. De Roo, M., Klauser, P., Mendez, P., Poglia, L. & Muller, D. Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. Cereb. Cortex 18, 151–161 (2008)

    Article  Google Scholar 

  29. Nagerl, U. V., Kostinger, G., Anderson, J. C., Martin, K. A. & Bonhoeffer, T. Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. J. Neurosci. 27, 8149–8156 (2007)

    Article  Google Scholar 

  30. Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo . Nature Neurosci. 9, 1117–1124 (2006)

    Article  CAS  Google Scholar 

Download references


We thank members of the Sabatini laboratory for their comments on the manuscript and assistance with data analysis. We are grateful to S. Nazia for technical support and for acting as the blind evaluator. This work was supported by a SFARI grant from the Simons Foundation and the National Institute of Neurological Disorders and Stroke (NS046579).

Author information

Authors and Affiliations



H.B.K. and B.L.S. designed the experiments and wrote the paper. H.B.K. performed all the experiments, analysed the data (other than spine counting by a blind, third-party observer) and prepared the figures.

Corresponding author

Correspondence to Bernardo L. Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, additional references, Supplementary Figures 1-10 with legends and Supplementary Tables 1-2. (PDF 1866 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwon, HB., Sabatini, B. Glutamate induces de novo growth of functional spines in developing cortex. Nature 474, 100–104 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing